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ABSTRACT

This thesis describes the development of a new collision detection algo-

rithm to be used when two spacecraft are operating in the same vicinity.

The two spacecraft are modelled as unions of convex polyhedra, where the

polyhedron resulting from the union may be either convex or nonconvex.

The relative motion of the two spacecraft is assumed to be such that one

vehicle is moving with constant linear and angular velocity with respect

to the other. The algorithm determines if a collision is possible and, if so,

predicts the time when the collision will take place.

The theoretical basis for the new collision detection algorithm is the

C-function formulation of the configuration space approach recently intro-

duced by researchers in robotics. Three different types of C-functions are

defined that model the contacts between the vertices, edges, and faces of the

polyhedra representing th_ two spacecraft. These C-functions are used to

formulate three "collision" conditions. The first of these conditions limits

th.e points representing potential coUisions to the zeros of the C-functions.

The new algorithm is fundamentally a search for the smallest zero of any

C-function that satisfies the second and third collision conditions.

The C-functions are shown to be transcendental functions of time for the

assumed trajectory of the moving spacecraft. The zeros of these functions

cannot be expressed in dosed form. Therefore, numerical search procedures

are developed to find aLl of the zeros of a C-function in specified bounded

intervals of time. These bounded intervals of time are found by examining
the second and third collision conditions.

The capabilities of the new algorithm are demonstrated for several ex-

ample cases. These include examples'of coUisions determined by zeros of

each of the three different types of C-functions. In addition to predict-

ing the time of first contact of the polyhedra, the algorithm identifies the

features of the two polyhedra that are touching at this time.

The new collision detection algorithm is the first such algorithm that is

capable of solving the collision detection problem exactly for the case where
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the moving object has constant linear and angular velocities. This is a sig-

nificant improvement on previous collision detection algorithms described

in the literature. In particular, the ability to handle constant angular veloc-

ity represents a more realistic type of rotational motion than those which

have been used in other algorithms.
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Chapter 1

Introduction

The next major goal of the U. S. space program is to develop a permanently

manned space station. Current plans call for many other spacecraft to

be operating in the vicinity of the station." These range from free-flying

platforms in neighboring orbits to active maneuvering vehicles such as the

OMV, OTV, and the shuttle orbiter.

One of the many areas of concern resulting from this environment is

the problem of collision avoidance. This is one of several related issues

in rendezvous and proximity operations which have been grouped under

the heading of space trat_c control I1,2]. The "establishment of a plan

for evolving space trai_c control development among elements of the space

fleet" has been recognized as a design goal for orbital operations in the

vicinity of the space station I3]. An important part of this will be a system

which provides safety from collision between known participating vehicles

C4].

The problem of avoiding a collision between two spacecraft can be di-

vided into three main phases. The first phase is the detection of a potential

collision at some time in the future. The second phase is the resolution of

the collision predicted by the first phase. This involves selecting a suitable

strategy for changing the motion of one 'or both of the vehicles to prevent

the collision. The last phase is the implementation of this strategy, which is

then monitored to confirm that the collision has been successfully avoided.

All of these phases merit further study, but this thesis will concentrate on

the first phase.

The goal of the thesis is to design a reliable algorithm for detection of

potential collisions between two spacecraft. This will require models for

the shapes of the two vehicles and for their relative motion. The algorithm

will determine if a collislon is possible and, if so, it will predict when the

collision will occur. The time remaining before the potential collision is

needed in the second phase to decide on an appropriate response.

Many maneuvers that are routinely used in spacecraft proximity oper-

ations require that two spacecraft operate near enough that their shapes

and rotational motion must be taken into account to accurately predict any



potential collisions. As will be seen later in this thesis, the relative rota-

tion of the two spacecraft greatly increases the complexity of the functions

modelling contacts between them.

A summary of previous work on collision detection and avoidance in

related fields is given in section 1.1. This includes a short introduction

to the configuration space approach, which will be used throughout the

remainder of this thesis. The collision detection algorithm implemented

for this thesis is based on this kpproach. The reasons for choosing this

approach and the assumptions used for the new algorithm are listed at the

end of section 1.1.

The development of the new algorithm is outlined in section 1.2. The

contents of the subsequent chapters of this thesis are also briefly described

in this section.

1.1 Survey of Related Work

Aircraft collision prevention has long been of interest and references are

available on many different airborne collision avoidance systems. These

systems typically model the two aircraft as point masses and consider only

their relative translation. These assumptions simplify the equations that

are used to compute the projected time of a collision or the miss distance if

no collision can occur [5]. The usual allowable distance between two aircraft

in flight is large enough so that their shapes and relative rotation can be

neglected. These systems are of limited interest for the spacecraft collision

detection problem because the shapes and relative rotation of the of two

spacecraft cannot be ignored, as mentioned in the previous section.

Two other fields in which related work has been done are mechanical

design and robotics. Mechanical designers are concerned with the interac-

tion of the components that make up a given assembly. In the case where

the assembly contains no moving parts, relatively simple static tests are

performed to determine if the components wiU fit together without over-

lap. When the assembly contains moving parts, more complex dynamic

testing is needed to determine if any components interfere with each other

during the motion. Advances in computer-aided design have motivated re-
cent work in the mathematical formulation of these tests. Some commercial

systems offer this type of testing for a specified set of trajectories of the



moving parts. However, these trajectories are usually quite restrictive and

may not allow simultaneous rotation and translation [6].

An active area of robotics research in recent years is task planning. Its

goal is to develop a high-level system for automatic planning of manipula-

tor movements. It brings together techniques from such diverse disciplines

as computational geometry, artificial intelligence, and control systems en-

gineering. An essential part of any task planner is the ability to generate

a collision-free trajectory for the manipulator through a workspace con-

taining known obstacles. This has been termed the FINDPATH problem

or the "piano movers" problem [7,8]. The trajectory of the manipulator

is unknown and is used as a free parameter in the search for a safe path.

The motion of the manipulator along its trajectory as a function of time is

not considered at this stage of the task planner. This distinguishes FIND-

PATH from the collision detection problem where the trajectory is assumed
known,

FINDPATH can be viewed as a generalization of the collision detection

problem that is much more difficult to solve. Nevertheless, many techniques

which have been proposed for the solution of the FINDPATH problem are

applicable to the collision detection problem.

One of the earliest schemes suggested for solving the FINDPATH prob-

lem is the "generate and test" method. An initial trajectory is proposed

and tested for potential collisions. If collisions are detected, a new path is

generated and tested for collisions. This iteration is continued until a path

is found which has no collisions. The collision detection problem must be

solved in each iteration step of this scheme. Some of the methods that have

been used to solve this part of a "generate and test" strategy are discussed

in the following paragraphs.

Perhaps the simplest method for detecting collisions is multiple interfer-

ence detection [9,10]. The objects are tested for overlap at discrete points

along the proposed trajectory. There are several algorithms of varying com-

plexity described in the computational geometry literature for determining

if two stationary sets of points in space intersect [11]. This method can be

used to predict the time to collision within the accuracy of the time step

along the trajectory. The difficulty lies in the choice of the time step size.

Smaller time steps require more applications of the interference detection

algorithm, but a time step which is too large can result in a potential col-

lision being missed. This has serious consequences for the reliability of the

3



collision detection algorithm.

Another method for collision detection is the swept volume method

[10,12]. The idea here is to consider the volume "swept" out by the moving

object along its trajectory as a new three-dimensional object. An interfer-

ence calculation is then performed for this swept volume and the known

obstacles to determine if they intersect. Depending on the nature of the

motion, the swept volume can be very hard to represent exactly. Rota-

tion of the moving object can result in especially complicated shapes. This

problem can be circumvented by either restricting the class of allowable

motions or by approximating the actual shape of the swept volume with

a simpler shape. Although the latter approach can decrease the accuracy

of the method, it usually simplifies the interference calculation. The main

disadvantage of this method is that it is very difficult to obtain the first

time of collision. The problem is reduced to a purely geometric level where

the time parameter is not directly taken into account.

A more sophisticated approach is to view the objects as sets of points in

four-dimensional space-time [10,13]. Once these sets are found for the given

trajectory, an interference detection algorithm is applied in four dimensions.

Theoretically, this method can be made to detect any collisions that will

occur and can predict the time of first contact. However, it is difficult to

represent the four-dimensional sets in any practical implementation. The

mathematics quickly becomes quite complex even for simple shapes and

motions.

The efficiency of the "generate and test" method for finding a collision-

free path is dependent on the means for generating each new trajectory.

Only localized information is available from the results of the previous

collision detection process and the best choice of the next trajectory is not

obvious. An alternative to this method which can potentially eliminate

this difficulty is the configuration space approach [7,12,14]. This provides

a global view of the problem by working directly with the constraints on

the motion of the moving objects due to the presence of the obstacles.

The configuration of an object is a set of parameters that determine

its position and orientation in space. The set of all possible configura-

tions is the six-dimensional configuration space. The motion of the three-

dimensional object in the original three-dimensional space is collapsed to

the motion of a single point in the configuration space. The presence of

the obstacles implies that there are configurations of the moving object
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which are "forbidden." In these configurations, the moving object is either

just touching the surface of an obstacle or overlaps an obstacle. The set

of forbidden configurations generated by a particular obstacle is called a

configuration space obstacle. The set of configurations outside of all the

configuration space obstacles iscalledfree space. Once the configuration

space obstacles are known, a search algorithm is employed to generate a

path through free space. All possible safe configurations are included in

this space; no restrictionsneed be placed on the trajectory of the moving

object while itremains in freespace.

The configuration space obstaclesaxe usually complex six-dimensional

solidseven for simple object shapes such as convex polyhedra. For this

reason, lesscomplicated approximations to these regions have been used.

The obstacle itselfcan be enclosed in a seriesof six-dimensional convex

polyhedra. Another approximation scheme involves sliceprojections and

cross-sectionsof the configurationspace obstaclesfor certainranges of some

subset of the six coordinates of the configurationspace [7,14].The shape of

a paxticular robot has also been exploited to simplify these obstacle shapes

[15].The approximations axe conservative in that they contain part of the

freespace as well as the entireconfiguration space obstacle. This is not of

great concern in the robotics context of generating a safe path, but it can

be a disadvantage to a collisiondetection algorithm. A potential collision

could be predicted to occur sooner than it actually occurs or a collision

could be predicted which does not occur causing a "falsecollisionalarm"

to be issued.

Another way to model a configurationspace obstacle isto find the func-

tions which generate itsboundary. Such a function is called a C-function

and the surface in configuration space where its value is zero is called a

C-surface. Some part of each infinite C-surface forms part of the finite

boundary of the configuration space obstacle. The obstacle can thus be

viewed as the intersection of all the closed half-spaces where an appropri-

ate set of C-functions have nonpositive or nonnegative values.

The C-functions were first defined for convex polyhedral objects in ref-

erence [14]. They were subsequently used in the development of the first

published implementation of a system for the solution of the complete six

degree-of-freedom FINDPATH problem [16]. These functions served two

purposes in this system. First, they were used in heuristic algorithms for

generating trajectory directions by moving along "levels" where the C-
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functions maintained constant values. The function values gave a rough

idea of the distance of the trajectory from the surface of the configuration

space obstacle. Second, these functions were used to detect when the tra-

jectory intersected the boundary of the configuration space obstacle. The

value of an appropriate C-function passing through zero indicated that the

trajectory had intersected the obstacle. A colllsion-free path was generated

in pieces by first determining how far the trajectory could extend along the

suggested direction before a C-surface was encountered and then using this

information to suggest a new direction for the next piece of the trajectory

such that it moved away from the configuration space obstacle.

In the system described above, collision detection was performed by

moving in discrete increments along the suggested trajectory and checking

the values of all appropriate C-functions at each increment. This strategy is

similar to multiple interference detection and also involves a choice of step

size. The accuracy of the computed collision points is limited to within this

specified resolution. The primary justification for this approach is that, for

most types of motion, the C-functions are transcendental and no explicit

formula exists for obtaining their roots.

An alternate collision detection scheme has recently been described

which exploits an advantageous limitation on the motion to simplify these

functions to polynomials in time [17]. This is accomplished by consider-

ing only those trajectories that can be written as polynomial functions of

time in the configuration space (not the original three-dimensional space).

For the collision detection algorithm presented in reference [17], it is as-

sumed that the trajectory of the configuration of the moving object follows

a straight line in the configuration space. A straight line path through con-

figuration space corresponds to translation with constant linear velocity and

rotation about a fixed axis. However, the angular velocity is not constant.

In fact, it decreases as time increases so that the object essentially stops

rotating after a long period of time. A straight line path in configuration

space results in cubic equations for the C-functions. The roots of these

cubic C-functions can be found analytically and thus the collision points

can be computed exactly.

The assumption of higher degree polynomial paths for the trajectory

of the moving object in configuration space gives polynomials of degree

five or greater for the C-functions. The roots of these functions cannot

be found analytically, but standard iterative methods are available. In
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general, the assumption of such a path in the configuration space yields

a restricted class of motions in three-dimensional space, especially in the

rotational component. Very high degree polynomials could perhaps be

used to approximate more natural classes of motion, but the increased

complexity of the methods used to find the roots of these polynomials would

outweigh the benefit of having such a "simplified" form for the C-functions.

In spite of the di_culties described above, the C-function formulation

of the configuration space approach is attractive for two reasons. First,

it has the potential to provide exact values for the time of first contact.

Second, it is guaranteed to detect a collision, if one wiU occur, within the

accuracy of the computer's calculations. However, polynomial paths in the

configuration space do not represent realistic models for the relative motion

of two spacecraft. Therefore, a different trajectory must be chosen for the

moving spacecraft.

Any useful assumption for the relative motion of the two spacecraft

should combine simultaneous translation and rotation for the moving vehi-

cle. The simplest trajectory that satisfies this requirement is characterized

by constant linear and angular velocities. For this thesis, one of the space-

craft will be assumed to be moving with constant linear and angular velocity

with respect to the other craft. The major difference between the algorithm

developed based on this assumption and the one described in reference [17]

is the rotational motion of the moving object. The assumption of a con-

stant angular speed as well as a fixed axis of rotation represents a more

natural type of motion for the moving spacecraft.

An overview of the development leading to the new collision detection

algorithm is given in the following section.

1.2 Description of Thesis

The configuration space approach is discussed in detail in Chapter 2. The

division of configuration space into configuration space obstacles and free

space is more fully described for the case where the moving object and

obstacle representing the two spacecraft are modeUed as unions of convex

polyhedra. The configuration space obstacles are characterized in terms

of the C-functions introduced in references [7,14,16,17]. Three different
types of C-functions are defined that model the contacts between different

7



featuresof the polyhedra representing the two spacecraft. The conceptsof
applicability and orientation of a C-function are introduced to explain the
relationship betweenthe C-functions and the configuration spaceobstacles.
An explanation of theseconceptsis postponed until Chapter 2.

Chapter 2 also presentsthe three fundamental "collision" conditions.

These conditions determine when the configuration of the moving poly-

hedron lies on the bourtdarv of a configuration space obstacle. For these

configurations, the surfaces of the two polyhedra are in contact but their

interiors are disjoint. The first collision condition limits the points rep-

resenting possible contacts between the two polyhedra to the zeros of the

C-functions. The second collision condition further restricts the potential

contacts to the zeros of a C-function that occur where the C-function is

applicable. The exact nature of the third collision condition wiU not be

given here, but any zero that occurs when a C-function is applicable must

also satisfy this condition to represent a true collision between the two

polyhedra.

The three collision conditions are used to outline a preliminary collision

detection procedure at the end of Chapter 2. This procedure solves the

collision detection problem by first finding all the zeros of the C-functions.

It then checks these zeros to find the ones that represent points where the

second and third collision conditions are satisfied. The first of these zeros

must represent the first contact between the two polyhedra.

The presentation in Chapter 2 makes no assumption regarding the tra-

jectory of the moving polyhedron. The three subsequent chapters apply

the general theory of Chapter 2 to the particular case where the moving

polyhedron has constant linear and angular velocities. Chapters 3, 4, and

5 discuss the implications of this assumption for each of the three collision

conditions. The nature of the C-functions for this trajectory is such that it

is more difficult to find the zeros of these functions than it is to determine

the regions where the second and third collision conditions can be satisfied.

Therefore, the second and third collision conditions are examined before

the first collision condition.

The second collision condition is considered in Chapter 3. This chap-

ter describes how to determine the applicability of the three types of C-

functions when the moving polyhedron is rotating with constant angular

velocity. The regions where a C-function is applicable can be determined

exactly for this type of rotational motion.



The form of the C-functions for constant linear and angular velocities is

examined in the first section of Chapter 4. These functions are shown to be

transcendental functions of time. The remainder of Chapter 4 is concerned

with the third collision condition. Approximate conditions are derived that

determine when a C-function can satisfy the third condition if the moving

polyhedron is translating with constant linear velocity.

Finally, the first coUision condition is considered in Chapter 5. This

chapter classifies each C-function into one of twelve cases and describes

how to find the zeros of the C-function, if any, for each case. Certain

details of the zero search procedure for the most general of these cases are

presented in Appendices A and B.

The ideas developed in Chapters 3, 4, and 5 are combined to produce

the new collision detection algorithm in Chapter 6. In contrast to the

preliminary procedure described in Chapter 2, the new algorithm first finds

the regions where the second and third coUision conditions can be satisfied

and then searches for the zeros of the C-functions in these regions. This

algorithm is a hierarchy of tests representing more complicated, but more

accurate, levels of modeUing the interaction of the moving polyhedron with

the stationary polyhedron.

The first section of Chapter 6 specifies the information required as input

by the algorithm. The next sections describe four major procedures used

by the algorithm. Then, the placement of these four procedures in the

overall hierarchy of the algorithm is discussed. An example is included to

iUustrate a typical path through the hierarchy.

The results of applying the new algorithm to several example cases

are presented in Chapter 7. Three different sets of moving and stationary

polyhedra are considered. One example of each of the three types of contact

at collision is given for each set of pdyhedra. Chapter 7 also includes a

brief discussion of the computation time required by the algorithm. A

comparison is made between the time required by the new algorithm and

a similar algorithm employing a simpler search procedure for the zeros of

the C-functions.

The final chapter, Chapter 8, contains the conclusions and some recom-
mendations for future work.
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Chapter 2

The Configuration Space Approach

This chapter presents an overview of the configuration space approach as a

means of modelling the interaction of the shapes of objects moving in space.

The discussion is primarily concerned with those aspects of the theory that

result from the assumption that the objects are represented by polyhedra.

No specific assumptions will be made concerning the relative motion of the

two objects. The implications of the assumption that one of the objects

is moving with constant linear and angular velocities relative to the other

object will be discussed in subsequent chapters.

The majority of the material presented in this chapter is based on ref-

erence I16]. Some changes have been made in the tests for applicability of

the type (c) C-functions. The concept of allowable zeros is original.

2.1 Configuration Space and Configuration

Space Obstacles

Consider a rigid object, denoted .4, which is free to rotate and translate in

three-dimensional space. Let the motion of .A, be measured with respect to a

reference coordinate system {X, Y, Z}. The unit vectors along the reference

coordinate axes form an orthogonal basis for the three-dimensional space

of motion of .A. Also define a body coordinate system {X,,Y_,Z,} which

is rigidly attached to .A and having its origin at the center of rotation of .A.
The center of rotation of .A, will be denoted C °.

Both the position of C a in the reference coordinate system and the ori-

entation of the body coordinate axes of ¢4 with respect to the reference

coordinate axes must be known to completely describe the spatial arrange-

ment of the points in the rigid body A.. The position of.A will be represented

by the vector x pointing from the origin of the reference coordinate system

to C _. Three common representations for the orientation of A are Euler

angles, transformation matrices, and quaternions. A specific choice among

these representations will not be made at this point. Instead, _) will be used

as a generic symbol denoting the orientation of A. An indication that some
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quantity depends on _) means that the value of that quantity as expressed

in reference coordinates changeswith the orientation of ,4.

A given set of values for ( x, O} is called a configuration of ,4. The space

of aLl possible values of x and 6) is the six-dimensional configuration space,

denoted C,_. (A). C,_:. (A_ is the Cartesian product of the translation

space and the rotation space of A. The translation space is the space of

all possible positions of C _, that is all possible values of the vector x. This

is simply the familiar three-dimensional EucLidean space _3. The rotation

space is the space of all possible orientations of ,4 expressed as possible

values of 6) once a particular representation is chosen. This space is the

three-dimensional special orthogonal group denoted SO(3). C,_:_ (A) can

thus be written as _s x SO(3). [18]

Now consider another rigid object, denoted B, in the same three-dimen-

sional space as the motion of -4 which has fixed position and orientation

relative to the reference coordinates. B is called an obstacle because it

restricts the motion of.4. The presence of B implies that there are forbidden

configurations of .4 which correspond to contact of the surfaces of .4 and

B or overlap of their interiors.

The configuration space obstacle for ,4 due to B is the set of all forbidden

configurations of .4 and is denoted CO_s. The boundary of CO_s is the set

of configurations where .4 and B have points in common only on their

surfaces. .4 and B are said to be just touching at these configurations

because their interiors are disjoint. For configurations of A inside COs a,

the interiors of -4 and B overlap. The set of configurations of A outside of

CO_s is called free space.

The motion of -4 as it translates and rotates in the original three-dimen-

sional space is equivalent to the trajectory of a single point in C,r_:, (.4).

The original three-dimensional obstacle B is correspondingly "grown" to

the six-dimensional obstacle CO_ in C'0r_,(.4 ). The collision detection

problem can thus be viewed as the process of determining if and when

a given trajectory of the configuration of .,4 starting in free space first

intersects the boundary of CO_s. This will be the first point where the

surface of the moving object comes into contact with the surface of the
obstacle.

A discussion of the properties of CO_s clearly depends on the choice

of the shapes for -4 mad B. For this thesis, both .4 and B are assumed to

be polyhedra. The characterization of CO_v presented in next sections also

11



requiresthat A and B be convex. Section 2.2 discusses the possible types of

contacts between the features of the two polyhedra and introduces the C-

functions that model these contacts. A characterization of CO_B in terms of

the C-functions is given in section 2.3. An extension of this characterization

to include the case where either A or/3 is a niJnconvex polyhedron will be

discussed in section 2.8.

2.2 Contacts for Convex Polyhedra

If .A and/3 are both convex polyhedra, the boundary of CO_s is determined

by three types of contact between the vertices, edges, and faces of A and

/3. A type (a) contact occurs when a face of A touches a vertex of/3, a

type (b) contact occurs when a vertex of A touches a face of/3, and a type

(c) contact occurs when an edge of A touches an edge of B. Consider a

configuration of A where it is just touching/3 such that the intersection of

their surfaces is a single point. If the only contact at this configuration is a

single type (a) contact, then one vertex of/3 must be touching the interior

of the polygon representing one of the faces of A. Analogously, if the only

contact at this configuration is a single type (b) contact, then a vertex of A

must be touching the interior of the polygon representing one of the faces

of/3. If there is a single type (c) contact and no type (a) or (b) contacts

at this configuration, then the intersection point of the surfaces of A and

/3 must be the point of intersection between an edge of A and an edge/3

that is not an endpoint of one of the two edges. The three configurations

in Figure 2.1 illustrate single type (a), (b), and (c) contacts in the original

three-dimensional space of the motion of A.

Multiple type (a), (b), or (c) contacts occur when a pair of features of

A and B are touching other than the three pairs which define type (a),

(b), and (c) contacts. As an example, suppose that a face of A touches a

face of/3. Any vertices on the face of B which are touching the face of A

correspond to type (a) contacts. Any vertices on the face of A which are

touching the face of B correspond to type (b) contacts. Any points where

an edge bounding the face of A intersects an edge bounding the face of B

correspond to type (c) contacts. Figure 2.2 shows the type (a), (b), and (c)
contacts for several different cases where a face of A touches a face of B.

A more subtle case of multiple type (a), (b), and (c) contacts occurs

12



Type (a) -- Vertex of B touches face of A

Type (b) -- Vertex of A touches face of B

Type (c) --Edge of AYouches edge of B

Figure 2.1: The three types of contact for polyhedra
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1, 2, 3 -Type (a) contacts

1 - Type (b) contact

2, 3 - Type (c) contacts

1 - Type (a) contact

2 - Type (b) contact

3, 4 - Type (c) contacts

Figure 2.2: Multiple type (a), (b), and (c) contacts for overlapping faces of
A andB
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for configurations of ,4 where one of its edges is aligned with an edge of

B. The term "aligned" means that the lines containing the two edges are

parallel. Suppose a type (c) contact occurs between two aligned edges of

A and B such that the only points in common between ,4 and B are the

points which lie on both of these edges. The CWO edges can overlap either

at a common endpoint, for a partial segment of their length, or one edge

can be completely contained in the other. In either of the first two cases,

one of the vertices at the endpoints of the edge of ,4 is touching the edge

of B and one of the vertices at the endpoints of the edge of 8 is touching

the edge of A. Since there are two faces of each polyhedron which meet at

each of the aligned edges, any vertex of .4 which touches the edge of B also

touches two of the faces of B. Any vertex of B which touches the edge of

.4 is touching two of the faces of ,4. This means that there are two type

(a) and two type (b) contacts for these two configurations. In the third

case where one edge completely overlaps the other edge, there are either

four type (a) or four type (b) contacts. If the edge of .4 is the larger edge,

then both vertices at the endpoints of the edge of 13 are contained in the

edge of .4. Therefore, both of these vertices touch the two faces that meet

at the edge of A and there axe four type (a) contacts at this configuration.

On the other hand, if the edge of/3 is the larger edge, then both vertices

at the endpoints of the edge of .4 touch the two faces that meet at the

edge of/3 and there are four type (b) contacts at this configuration. For

the remainder of this section and for the three sections which follow, it will

be assumed that the two edges are not aligned whenever type (c) contacts

are discussed. The implications of edge-edge alignment will be discussed in
detail in section 2.6.

2.2.1 The C-functions for Convex Polyhedra

Each of the three types of contacts described above can be represented by

a different set of functions. These functions are catled C-function_ because

they model the constraints on the configuration of .4 due to the presence

• of B. There is one such C-function for each pair of features of .4 and B

corresponding to type (a), (b), or (c) contacts.

The C-functions are formulated using vectors to represent the the three

features of the polyhedra representing .4 and/3. The vectors representing

the faces, edges, and vertices of .4 and//are defined below.
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Let the open positive half-space of a plane containing a face of a convex

polyhedron be the half-space which doea not contain any points on or inside

of the polyhedron. Then the closed negative half-space is the half-space

which consists of the plane itself and the open-half space which doe_ contain

points on or inside of the polyhedron. Then, the unit, outward-pointing

normal vector for a face of a convex polyhedron is deft.ned as that unit

vector which is perpendicular to the plane containing that face and which

points into the positive half-space of that plane.

An edge vector is defined to be a vector that points along some edge of

the polyhedron from one of the vertices which is an endpoint of this edge

to the other vertex which is an endpoint. The vertex where an edge vector

begins is referred to as its tail vertex while the vertex where it terminates

is referred to as its head vertex. Clearly, there are two possible edge vectors

for each edge depending on the choice of which of the two endpoints is the

tail vertex and which is the head vertex. These two edge vectors point in

opposite directions. For the remainder of this thesis, when the direction of

the edge vector is relevant to the discussion its tail vertex will be specified.

When the direction of an edge vector is not relevant, the choice of the tail

vertex is arbitrary and it will not be explicitly identified.

The vector representing a vertex of the polyhedron for the moving object

.A is the vector which points from C _' to that vertex. For B, the vector

representing a given vertex points from the origin of reference coordinates

to that vertex.

These vectors are illustrated in Figure 2.3. The vectors representing fea-

tures of A are fixed in the body coordinate system of A, but depend on the

orientation of ,4 when expressed in reference coordinates. The vectors rep-

resenting features of B are fixed in reference coordinates. All of these vectors

are expressed in reference coordinates when defining the C-functions. The

dependence of vectors representing features of .A on O indicates that these

vectors have been transformed from the body coordinates of ,4 to reference

coordinates.

Type (a) C-functions A type (a) C-function models the contact be-

tween a face of A and a vertex of B. Let u_ (_)) be the unit, outward-

pointing normal vector to the ith face of ,4 and _ (_)) be the vector rep-

resenting any one of the vertices of .A which lies on its ith face . Let h/ be
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The unit, outward-pointing normal vector u_ for face i of a convex polyhe-

dron is perpendicular to the plane Pi which contains face i and points into

the half-space of Pi which does not contain the polyhedron.

An edge vector ei for edge i of a polyhedron points along the edge from its

tail vertex il to its head vertex i2.

_6 " VERTEX

The vector al (_)) representing vertex i of .4 points from C _, the center of
rotation of .4, to vertex i.

VERTEX i.

The vector i_ representing vertex i of B points from the origin of reference
coordinates to vertex i.

Figure 2.3: The vectors representing vertices, edges, and faces of .4 and B
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Figure 2.4: The type (a) C-function f_,_

the vector representing the jth vertex of B. Then the type (a) C-function

f_,_ for face i of A and vertex j of B is defined as

The first inner product is the magnitude of the component of hj along

U_ (_)). The term x+ al (_)) is the position of vertex/of .A in the reference

coordinate system. R,ecall that this vertex was chosen to lie on face i of fl[.

Therefore, the second inner product is the distance to the plane containing

face i of .A from the origin of the reference coordinate system measured

along the normal to this plane. This distance is the same for all points on

face i of ,4. The C-function f_j then measures the distance of vertex j of B

from the plane P_ containing face i of ,4 along its outward-pointing normal

vector. Its magnitude is equal to the minimum distance from the vertex of

/3 to this plane.

Figure 2.4 shows the construction of f_,j for a configuration of A where

it has a positive value. The type (a) C-function f_j is positive whenever

vertex j of B lies in the open positive half-space of P_ and it is negative

whenever vertex j of/_ lles in the open negative half-space of P_. When

the value of f_j equals zero, vertex j of B lies in Pia .

18



Type (b) C-functions A type (b) C-function models contact between

a vertex of .4 and a face of B. Let a_ (6) be the vector representing the

ith vertex of .4. Let _ be the unit, outward-pointing normal vector to the

jth face of B and hj be the vecto r representing any one of the vertices of

/_ which lies on its jth face. Then the type (b) C-function f_ for vertex i

of .,4 and face j of B is defined as

The first inner product is the ma_mitude of the component of the position

of of x+ The  condinnerproduct
the distance of the plane pb containing face j of B from the origin of the

reference coordinate system measured along _.. It is constant because B is

stationary with respect to this reference frame. This distance is the same

for all points in face j of E. The C-function f_j measures the distance of

vertex i of A from the plane P_ along its outward-pointing normal vector.

Its magnitude is the minimum distance between the vertex of A and this

plane.

Figure 2.5 shows the construction of f_j for a configuration of .4 where

it has a positive value. The type (b) C-function f_ is positive whenever

vertex i of .4 lles in the open positive half-space of P_ and it is negative

whenever vertex i of A lies in the open negative half-space of P_. When

the value of f_j equals zero, vertex i of .4 lles in p S.

Type (c) C-functions A type (c) C-function models contact between

an edge of .4 and an edge of B. Let e_ (6) be one of the edge vectors for

the ith edge of .4 and a_I (6) be the vector representing the tail vertex of

e_ (6). Let _ be one of the edge vectors for the jth edge of B and 1_1 be

the vector representing the tail vertex of _. Then the type (c) C-function

f_j for edge i of .4 and edge j of 8 is defined as

Either of the two edge vectors for edge i of ,4 and edge j of B can be used

in the above definition.

The cross product e_ (6)) x _, which appears twice in the definition "of

f_j, is the normal vector to the plane P_ which contains edge j of/_ and
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I

X

Figure 2.5: The type (b) C-function f_j

is parallel to edge i of .,4. This plane is unique except wllen the two edges

are aligned, as will be discussed in section 2.6. The first inner product is

the magnitude of the component of the position vector of the tail vertex of

distance of edge from the origin of the reference coordinate system

along the normal vector to P_. Since P_ is parallel to edge i of .2,, this

distance is the same for all points along edge i of A. The second inner

product is the distance of the plane P_ from the origin of the reference

coordinate system measured along the normal vector to this plane. This

distance is the same for all points along the jth edge of B because the jth

edge lies in P_. By taking the difference of the two inner products, the C-

function f_ measures the distance of edge i of A from P_ along its normal

vector. The magnitude of f_¢ is equal to the minimum distance between

edge i of A and P_, which is equivalent to the minimum distance between

the lines containing edge i of A and edge j of B.

Figure 2.6 shows the construction of f_j for a configuration of A where

it has a positive value. The type (c) C-function fi_j is positive whenever

edge i of A lies in the open positive half-space of P_ and it is negative

whenever the vertex of ,4 lies in the open negative half-space of P_. When
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X

Z

X÷

Figure 2.6: The type (c) C-function f_,j
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the valueof f_.j equals zero, edge i of .A. lles in the plane P/_. In other words,

edge i of A and edge j of/3 are coplanar when f_j is zero.

2.3 The C-functions and Construction of the

Configuration Space Obstacle

This section considers the relationship of the C-functions and the config-

u.ration space obstacle. The discussion wiU first be restricted to the case

where A is not rotating so that the orientation of.A is fixed. The projection

of COJ in C,_,, (A) for a fixed orientation of A is described. This projec-

tion is an object in the three-dimensional translation space of A and will

be denoted CO_s (x). Next, the C-surfaces defined by the C-functions are

introduced and the concepts of applicability and orientation of a C-function

are defined in order to describe the construction of CO_s (x) using these

C-surfaces. This construction leads to the formulation of conditions that

determine whether a particular value of x is in free space, on the boundary

of CO_8 (x), or inside of CO_(x). Then, the concepts of C-surfaces and

applicability and orientation of a C-function are generalized to include the

case where the values of both x and _) are changing. The construction of the

full six-dimensional configuration space obstacle CO_s from the C-surfaces

is described. Finally, three "collision" conditions are given that determine

When a particular configuration of A, {x, _)}, lies on the boundary of CO_.

2.3.1 The Configuration Space Obstacle for Fixed Ori-

entation of A

As a simple example of the process by which the three types of contacts

produce surfaces of CO_s in Co_,_,(A), consider the projection of CO_s for

a fixed orientation of A, CO_(x). The part of CO_ (x) which is due to a

particular type (a) contact is formed by sliding a face of A along a vertex

of B with .4 in the appropriate fixed orientation. The face of A must be

chosen such that the interiors of A and/3 remain disjoint as the face slides

along the vertex of/3. The boundary of the part of CO_ (x) due to this

type (a) contact is generated as the edges bounding the face of A slide

along the vertex of/3. C _ remains within a polygon which is simply the

face of A rotated to the given fixed orientation of A and displaced by an
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appropriate distance to maintain contact between the face and the vertex
of 8.

Similarly, the part of CO_ts (x) which is due to a particular type (b)

contact is formed by sliding a vertex of .A, along a face of 8 with A in the

appropriate fixed orientation. In this case, thevertex of .A must be chosen

such that the interiors of .A, and 8 remain disjoint as the vertex slides along

the face of 8. The boundary of the part of CO_ (x) due to this type (b)

contact is generated as the vertex of .A slides along the edges bounding the

face of B. In this case, C _ remains within a polygon which is simply the

face of B displaced by an appropriate distance to maintain contact between
the face and the vertex of ,4.

The part of CO_s (x) which is due to a particular type (c) contact is

formed by sliding an edge of A along an edge of B with A in the appropriate

fixed orientation. The edge of .A must be chosen so that the interiors of ,4

and B remain disjoint as it slides along the edge of 8. Two parallel edges

are formed as part of the boundary of CO_s (x) by sliding the edge of A

along the two vertices which are the endpoints of the edge of 8. The other

two parallel edges which complete the boundary of this part of CO_s (x)

are formed by sliding the vertices which are the endpoints of the edge of A

along the edge of B. C" remains within the parallelogram formed by these

two sets of parallel edges. This parallelogram lies in a plane which is parallel

to the plane which contains the edges of .A and 8. One set of edges of the

parallelogram comes from displacing the edge of .4. by the two appropriate

distances which maintain contact between the edge and the endpoints of

the edge of 8. The other set of edges comes from displacing the edge of B

by the two appropriate distances which maintain contact between the edge

and the endpoints of the edge of A.

Thus, for a fixed orientation of A, the projection of CO_s onto the three-

dimensional translation space is a convex polyhedron in the translation

space of .A. It is made up of displaced faces of A and 8 due to type (a)

and (b) contacts which are connected by parallelograms due to type (c)
contacts.

Figure 2.7 shows the complete convex polyhedron CO_ (x) for two rect-

angular boxes. One face due to each of the three types of contact is indi-

cated along with the features of .A and B which generated it.

Since COs A (x) is a convex polyhedron, it is easy to test whether a

particular value of x lies outside, on, or inside it. Convexity guarantees that
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j

EDGE 3 rACE 7: 'VERTgX {

Moving object A and obstacle/_

1. Type (a) face generated by sliding face i of A along vertex j of B

2. Type (b) face generated by sliding vertex i of A along face j of B

3. Type (c) face generated by sliding edge i of A along edge j of B

Figure 2.7: The convex polyhedron COBA(x) for two rectangular boxes
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the entire polyhedron lles in the dosed negative half-space for any one of

the planes containing a face of the polyhedron. Also, a point which is either

on the surface of the polyhedron or in its interior lies in the closed negative

half-spaces of all of the planes containing a face of the polyhedron. Thus,

a particular value of x lies on or inside of CO_s (x) if it lies in the closed

negative half-space of each of the planes containing a face of CO_(x). A

particular value of x lies on the boundary of CO_ (x) if it lies in the plane

of at least one of the faces of COs _ (x) and in the open negative half-space

of the planes of the remaining faces of CO_ (x).

The next four sections describe how to identify the planes containing

the faces of CO_8 (x) with an appropriate set of C-functions and how to use

the values of these C-functions to test the location of x relative to CO_s (x).

2.3.1.1 C-surfaces

Consider the possible translations of C" for a fixed orientation of A that

result in constant values for each of the three types of C-functions. The

type (a) C-function f_'d measures the perpendicular distance of vertex jof

B from the plane/_i containing face i of A. Therefore, C" must translate in

a direction parallel to P3 if the value of f_ is to remain constant. Similarly,

C" must translate in a direction parallel to the plane P_ containing face j

of B if the value of f_j is to remain constant. This is because f_j measures

the perpendicular distance between vertex i of A and P_. When edge i of

A and edge j of B are not aligned, the type (c) C-function f_i measures

the perpendicular distance of edge i of A from plane Pi_ that contains edge

j of B and is parallel to edge i of A. The value of f_i will remain constant

only if C" translates in a direction parallel to P_.

Now, the normal vectors to planes P3, P_ and Pi_ are fixed for a fixed ori-

entation of A. In this case, when C a translates in a direction parallel to one

of these planes, the position vector x must terminate in a plane that is also

parallel to one of these planes. Thus, the surfaces where a C-function has

constant value are two-dimensional planes in the three-dimensional trans-

lation space of A. The plane containing all the values of x where the value

of a C-function is zero is the C-surface defined by that C-function.

Recall the description of the faces of CO_s (x) given above. A type (a)

face is generated by translating A such that one of its faces remains in

contact with one of the vertices of B. For this motion, C" is translating

25



parallel to the plane containing the face of A and the type (a) C-function

defined by the face of A and the vertex of _ that are in contact must

be zero. Identical arguments show that the value of a type (b) or (c) C-

function whose defining features are in contact when a type (b) or (c) face of

CO_ (x)is generated must also be zero. Therefore, the faces of CO_s (x)

are contained in planes that are C-surfaces for some of the C-functions

defined by the features of .A and B.

The next sections will describe how to distinguish those C-functions

whose C-surfaces generate the faces of CO_B (x) from the set of all C-

functions defined by the features of .A and B.

2.3.1.2 Applicability of a C-function

By definition, the boundary of CO_ (x) consists of those values of x where
the surface of ,4 touches the surface of B such that their interiors remain

disjoint. For any fixed orientation of ,4, only a small subset of the possible

C-functions defined by the features of .A and 8 represent contacts where

the interiors of .A and 8 do not overlap. The C-function defined by two

particular features of A and B is said to be applicable for orientation (_

if a pure translation of A with fixed orientation _ can bring the feature

of ,4 into contact with the feature of B without overlap of their interiors.

Becaiase this definition allows arbitrary translations of A, the applicability

of a C-function depends only on the orientation of A. It is the contacts of

features in the subset of applicable C-functions that generate the faces of

c (x)
The applicability of a C-function for a given value of _) can be tested by

assuming that A has been translated with the fixed orientation _) until the

features defining the C-function are in contact and asking if the interiors of

,4 and B are disjoint after this translation. This is equivalent to asking if

there exists a plane containing the features defining the C-function which

just separates ,4 and 8. This separating plane must divide the three-

dimensional space into two closed half-spaces, one of which contains .A

and the other of which contains B. The only points where the surfaces of

.A and B can be in contact lie in the separating plane itself. If a separting

plane can be found, the C-function is applicable for the given orientation
O. If no separating plane exists when the two features are brought irito

contact, then the interiors of s4 and B must overlap and the C-function is
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not applicable for the given orientation _).

The plane that separates -4 and B when the features defining an ap-

pUcable C-function are in contact depends on the type of the C-function.

When the type (a) C-function f_,j is applicable, ,4 can be translated so that

its ith face touches the jth vertex of B without overlap of the interiors of

A and B. The plane P_ containing face i of -4 then separates -4 and B.

Similarly, .4 can be translated so that its ith vertex touches the jth face of

B without overlap of the interiors of ,4 and B when the type (b) C-function

f_j is applicable. The plane P_ containing face j of B then separates ,4

and B. When f_,j is applicable and edge i of -4 is not parallel to edge j of

B, -4,4can be translated such that edge i of ,4 touches edge j of B without

overlap of the interiors of -4 and B. In this case, the plane P/_ containing

edge j of B and parallel to edge i of A separates -4 and B.

In general, the individual C-functions may take on any value when -4

and B are overlapping. The value of one of these C-functions contains no

information about any contact or overlap of -4 and B unless it is known to be

applicable for the given orientation of A. For a given orientation of -4 where

the C-function is applicable, its value wiU determine in which half-space of

the C-surface containing the corresponding face of COOs (x) a particular

valhe of x lies. The next section specifies which half-space corresponds

to positive values of the C-function and which half-space corresponds to

negative values of the C-function. This must be known to formulate rules

that determine the location of x relative to CO_s (x) using the values of

the C-functions.

2.3.1.3 Orientation of a C-function

When the type (a) C-function f_j is applicable, one of the faces of COOs (x)

is a displacement of face i of -4 and lies in the C-surface defined by f_j.

This C-surface is a plane parallel to the plane P_ containing face i of -4.

The outward-pointing normal vector for face i of -4 is the inward-pointing

normal vector for the corresponding face of COs _ (x).

When the type (b) C-function f_j is applicable, one of the faces of

CO_s (x) is a displacement of face j of B and lies in the C-surface for f_j.

This C-surface is a plane parallel to the plane P_ containing face j of B. The

outward-pointing normal vector for face j of B is also the outward-pointing

normal for the corresponding face of COOs (x).
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Becauseof the order of the inner products in the definitions of f_ and

f_, a positive value for either of these C-functions indicates that the posi-

tion x lies in the open positive half-space of the corresponding C-surface.

In other words, a positive value indicates that x lies in the half-space of the

C-surface that does not contain CO_B (x). A nonpositive value indicates

that x lies in the closed negative haif-space of the corresponding C-surface,

which is the half-space that does contain CO_ (x). If any of the applicable

type (a) or (b) C-functions have a positive value at x, then x lies outside of

CO_s (x). This is a direct consequence of the fact that the outward-pointing
normal vectors to the faces of A and B were used in the definition of the

type (a) and (b) C-functions.

When the type (c) C-function f_ is applicable, one of the faces of

CO_s (x) is a parallelogram that lies in the C-surface defined by f_j. This

C-surface is a plane paraUel to the plane Pi_. However, the normal vec-

tor to plane P/_ used in the definition of f_ was arbitrarily chosen to be

e¢ (_)) × _ and it may point into either of the half-spaces defined by P_.tJ"

In this case, _. (_)) x _ may be either the outward-pointing or the inward-

pointing normal vector for the corresponding face of CO_s (x). The direc-

tion of e_ (_)) x _ must be determined before the value of f_¢ can be used

to distinguish whether x lles outside or inside of CO_(x). This. is called

orienting the type (c) C-function f_j.

For an orientation of A where f_,_ is applicable and where e_ (_)) ×

points into the half-space of P._.,jwhich does not contain/3, e_ (_)) × _ is

the outward-pointing normal to the corresponding face of CO_n(x ). A

positive value of f_j indicates that x lies in the half-space of the C-surface

for f_,_ that does not contain COsa(x) and thus x lies outside of CO_B (x).

The type (c) C-function is said to have positive orientation for this value

of _). Figure 2.6 shows art applicable type (c) C-function with positive

orientation. Note that all type (a) and (b) C-functions can be said to have

positive orientation for any value of _) where they are applicable.

For an orientation of A where f_j is applicable and where _ (_)) x

points into the half-space of P'_',3which does contain /3, _ (_)) × _ is the

inward-pointing normal to the corresponding face of CO_ (x). A positive

value of f_ indicates that x lies in the half-space of the C-surface for f_¢
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that does contain CO_ (x). A negative value of f_,j indicates that x lies in

the half-space of the C-surface for f_ that does not contain CO_(x). In

this case, a negative value off_ indicates that xlies outside of CO_ (x).The

type (c) C-function is said to have negative orientation for this value of O.

2.3.1.4 Constructing CO_s (x) from C-surfaces

The three preceding sections have shown that CO_ (x) can be constructed

from the C-surfaces of the set of applicable C-functions at orientation _).

The C-surfaces are planes that divide the three-dimensional translation

space into two half-spaces. The closed positive half-space of a C-surface is

the half-space where the value of the C-function is greater than or equal

to zero and the closed negative half-space of a C-surface is the half-space

where the value of the C-function is less than or equal to zero. These closed

half-spaces both include the C-surface itself. CO_ (x) is the intersection

of the closed negative half-spaces of the C-surfaces defined by applicable

C-functions with positive orientation at 0 and the closed positive half-

spaces of the C-surfaces defined by applicable C-functions with negative
orientation at _).

The following procedure can be used to determine if any position x

lies on or inside of COr_s (x) for a given value of _). First, the subset of

all applicable C-functions is found from the larger set of all possible C-

functions. Then x will lie on or inside of the convex polyhedron COhOs (x)
if

• The value of each applicable type (a) C-function is nonpositive.

• The value of each applicable type (b) C-function is nonpositive.

• The value of each applicable type (c) C-function with positive orien-

tation is nonpositive.

• The value of each applicable type (c) C-function with negative orien-

tation is nonnegative.

Furthermore, at least one of the applicable C-functions must be zero for

x to lie on the surface of CO_(x). If this is the case, then .,4 and /_

are just touching at {x, 0}. If all of the applicable type (a) and (b) C-

functions and the applicable type (c) C-functions with positive orientation
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are strictlynegative and all of the applicable type (c) C-functions with

negative orientation are strictlypositive, then the interiorsof .,4and 13

overlap at (x, _)}.Ifany of the applicable type (a) mad (b) C-functions and

the applicable type (c) C-functions with positive orientation are positive

or any of the applicable type (c) C-functions With negative orientation are

negative,then there isno contact of .4 and B at (x, _)]..

2.3.2 The Six-dimensional Configuration Space Ob-

stacle

The discussion thus far has been restrictedto describing the structure of

CO_s for some fixed orientation of .4. The concept of defining CO_ (x)

as the intersectionof half-spacesdetermined by planes in the three-dimen-

sionaltranslation space of .4 can be extended to characterize the fullsix-

dimensional obstacle CO_. This yields a definition for the boundary of

CO_s for the fullrange of possible motions of .4 where both the position

and orientation of .4 are allowed to vary with time. If _) is fixed, the

valuesof the C-functions depend only on the translationparameters x, but

they are more properly considered to be functions of both the rotation and

the trartslationparameters. The domain of each C-function is the entire

When _) is allowed to vary, there are motions of .4 that keep the value

of a given C-function constant that involve both rotation and translation.

In this case, the points where the value of a C-function is constant define

a five-dimensional surface in C,_e (.4). The five-dimensional surface where

the value of the C-function is zero is the true C-surface defined by that

function. The planes that were referred to as C-surfaces of the C-functions

when O is fixed are actually projections of the five-dimensional C-surface

onto the three-dimensional translation space of .4. Each C-surface divides

C,p,_ (.4) into two open half-spaces, one where the value of the C-function

is positive and one where the value of the C-function is negative.

As was the case for the construction of CO_(x): both the applicability

and orientation of a C-function must be considered in order to determine

which part of its C-surface lies on the boundary of CO_B. There can be

many values of O where the C-function is applicable. The set of all ori-

entations where a C-function is applicable is called the applicability region
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/

C-surface for a C-function which is not applicable

C-surface for an applicable C-function

Boundary of CO_s

Shading indicates the open half-space where an applicable C-function with

positive orientation is negative or the open half-space where an applicable

C-function with negative orientation is positive.

Figure 2.8: Construction of CO_s from C-surfaces

of the C-function. The applicability regions divide the C-functions into

those that represent possible contacts of the surfaces of A and B and those

that represent contacts where the interiors of A and B overlap. A posi-

tive or negative orientation can be associated with each value of O in the

applicability region of a C-function.

The configuration space obstacle, CO_, is the intersection of the closed

half-spaces where each applicable C-function with positive orientation is

nonpositive and each applicable C-function with negative orientation is

nonnegative. On the boundary of COOs , at least one applicable C-function

must be zero. Therefore, this boundary is composed of "patches" of various

C-surfaces. The patch of any particular C-surface which lies on the bound-

ary of CO_s is found by first discarding that part of the surface where the

C-function is not applicable. Of the remaining piece, only the part that lies

• in the closed negative half-spaces of all the other applicable C-functions

with positive orientation and the closed positive half-spaces of all the other

applicable C-functions with negative orientation is retained. See Figure 2.8.
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2.3.3 The Three Collision Conditions

The method of constructing CO'_ts from the C-surfaces leads to three condi-

tions that must be satisfied for a configuration { x, _)} to lie on its boundarT]:

1. At least one C-function must be zero for (x,.._)}.

2. At least one of the C-functions whose value is zero must be applicable

for _.

3. Any applicable C-function having positive orientation for _ must be

nonpositive and any applicable C-function having negative orientation

for _) must be nonnegative for { x, O).

When these conditions are satisfied, .A and/3 are touching without overlap.

These conditions will be referred to as the "collision" conditions. It is inter-

esting to note that the configuration must lie on or inside of CO_s whenever

the third collision condition is satisfied. Conversely, the configuration must

lie in free space if the third coUision condition is not satisfied. The first

two conditions must be added to the third condition in order to distinguish

configurations on the boundary of CO_s from configurations inside of CO_.

The first collision condition insures that the configuration of A lies on at

least one C-surface. If the configuration does not lie on any C-surfaces, then

it cannot lie on the boundary of CO_. There will typically be many points

along the trajectory of A where its configuration {x, _} passes through

a C-surface. However, a more detailed discussion of how to find these

points where the value of a C-function passes through zero cannot be given

unless a specific assumption is made for the trajectory of A. Since this

chapter is concerned with those aspects of the theory that apply for any

trajectory of A, no further consideration will be given to the first collision

condition. When convenient, it will be assumed that configurations where

this condition is satisfied can be found by some unspecified means.

The second collision condition requiring that at least one zero-valued

C-function be appllcable is a restriction on the orientation parameters _).

The value of a particular C-function being zero implies that the features of

A and B which define it may be in contact, but no conclusion can be drawn

about the relative locations of the other features of A and/3. In particular,

it is not known whether or not the interiors of the objects will overlap

when the two features of A and/_ come into contact. The condition that a

32



zero-valued C-function be applicable isused to insure that the interiorsof

_4 and B do not overlap ifthe two features defining the C-function are in

contact.

The third collisioncondition isprimarily a constraint on the translation

parameters x. It arisesfrom the fact that imemite planes are used to define

the C-functions while only finiteparts of these planes can represent actual

contact between the relevant features of .A and B. Whenever the two fea-

tures of .4 and B defining a particular C-function are in contact, the value

of the C-function must be zero. However, the converse isnot true. There

are configurationswhere the value of a C-function can be zero and the two

features which defineitare not in contact. The third collisioncondition is

required to insure that the relevant features for at least one of the appli-

cable C-functions having zero value at some configuration are actually in

contact for that configuration.

The collisionconditions are both necessary and su_cient for determin-

ing when a configuration lieson the boundary of CO_s. This can be ex-

plained in terms of the contacts between .A and B. Consider, for example, a

type (b) contact where some vertex of .4 isjust touching a face of 8. Then

thisvertex liesin the plane containing the face of 8 and, by definition,the

corresponding type (b) C-function iszero. Depending on the orientation

of ._, the interiorsof _ and _ may or may not overlap when thiscontact

takes place. Since the boundary of CO_ is by defmtion a set of configu-

rations where the interiorsof ._ and B do not overlap, the fact that the

C-function iszero is not sufficientto guarantee that the configuration lies

on this boundary. Thus, the condition of applicabilitymust be included.

Suppose now that the C-function defined by the vertex of _4 and the face

ofB has a zero value at some con_figurationwhere itisapplicable.The def-

initionof the C-function implies that itsvalue iszero whenever the vertex

of .A is in the plane containing the face of/_. The actual face of B occupies

only a finite part of this plane. Therefore, the C-function can be zero when

the vertex of ,,4 is located in a part of this plane outside the boundaries

of the face of B. The third condition guarantees that the vertex of .A lies

within the boundaries of the face of B at the configuration of interest.

Figure 2.9 shows how the second and third conditions eliminate configu-

rations that are not on the boundary of CO_s for type (b) contacts. Similar

arguments to the above can be made for type (a) and (c) contacts.
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Four points where a type (b) C-function is zero:

I _ 4 The C-function is not applicable. This implies contact of a

vertex of A with a plane containing a face of B such that A

and/3 would overlap.

2 The C-function is applicable, but the other" applicable C-

functions with positive orientation are not all nonpositive or

the other applicable C-functions with negative orientation are

not all nonnegative. This implies contact of a vertex of A with

a plane containing a face of B but not with the face itself.

3 The C-function is applicable, all the other applicable C-

functions with positive orientation are nonpositive, and all the

other applicable C-functions with negative orientation are non-

negative. This point lies on the boundary of CO_s. This im-

plies a collision of A and B.

Figure 2.9: Illustration of conditions 2 and 3 for a configuration to lie on

the boundary of CO_B
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Unlike the first collision condition, further details regarding the config-

urations of A where the second and third collision conditions are stalsfied

can be given without assuming a specific trajectory for A. The next sec-

tion, section 2.4, derives a set of tests that determine whether each of the

three types of C-functions is applicable for a given value of _). Section 2.5

discusses another means for testing the third collision condition that does

not require computation of the values of the other applicable C-functions

given a configuration "where at least one applicable C-function is zero.

2.4 Applicability of C-functions for Convex

Polyhedra

The convexity of the polyhedra .A and/3 can be exploited to derive simple

tests for the applicability of each type of C-function. Since A is convex,

it lies entirely in the closed negative half-space defined by the plane P_

containing its ith face. Suppose that A is translated with fixed orientation

_) until its ith face is touching the jth vertex of/3. Then, by definition,

th_ type (a) C-function f_,i will be applicable at 0 if/3 lies entirely in the

closed positive half-space of P_. In other words, f_,i will be appllcable if

P_ is the unique separating plane for A and/3 when face i of A is touching

vertex j of/3 with A at orientation _). Since /3 is also convex, it will lie

entirely in the closed positive half-space of Pi" if all of its edges which meet

at vertex j are in this half-space. Note that this includes orientations where

one or more of these edges lies in P_. It is not possible for all of the edges

that meet at a vertex of a polyhedron to be coplanar, so at least one of the

edges which meet at vertex j of/3 will not lie in P_. Convexity guarantees

that the edges of/3 meeting at its jth vertex are the only features of/3 that

need be considered to determine the applicability of fifo.

Applicability of the type (b) C-function f_o can be tested in a similar

manner. Since/3 is convex, it lies entirely in the closed negative half-space

defined by the plane P_ containing its jth face. Suppose that A is translated

with fixed orientation _) until its ith vertex is touching the jth face of/3.

Then, by definition, the type (b) C-function f_j will be applicable at _) if

A lles entirely in the closed positive half-space of P_. In other words, f_j

will be applicable if P_ is the unique separating plane for A and/3 when
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vertex i of A is touching face j of 8 with A at orientation _). Since A is also

convex, it will lie entirely in the closed positive ha_-space of P_ if all of its

edges that meet at vertex i are in this halbspace. Orientations where some

of these edges lie in P_ are included in this criterion, but it is not possible
for all of them to lie in this plane simultaneously. Convexity guarantees

that the edges of A meeting at its ith vertex are the only features of A that

need be considered to determine the applicability of ./_j.

If edge i of A is not parallel to edge j of B for orientation _), there

is a unique plane P_ that contains edge j of B and is parallel to edge i

of A. This plane has normal vector _ (_)) × _. Now suppose that A is

translated with fixed orientation _) until its ith edge is touching the jth

edge of B. Then, edge i of A will also lie in P_. By definition, the type

(c) C-function /_j will be applicable at _) if B lies entirely in one of the

closed half-spaces of P_ and A lies entirely in the other closed half-space

of Pi_. In other words, f_ will be applicable if Pig is the unique separating

plane for A and B when edge i of A is touching edge j of B with A at

orientation _). Since B is convex, it will lie entirely in one closed half-space

of P_ if the two faces that meet at its jth edge lie in that half-space. An

identical argument holds for the two faces of A that meet at its ith edge.

This criterion includes orientations where one of these faces of A or B lies

in P_. The two faces of a convex polyhedron that meet at one edge are

never coplanar. Therefore, if one of the two faces of either object lies in

P_ for some orientation of A, the other face will not lie in Pi_" Convexity

guarantees that these faces are the only features of A and/_ that need be

considered to determine the applicability of f_j.

However, it is not sufficient to determine that both A and/_ lie entirely

in one of the closed half-spaces of P_. It must also be true that the half-

space of P_ containing .A. does not contain /_ and vice versa. That is, .A

and/_ must lie in opposite half-spaces if f_i is to be applicable. There

are two possibilities: (i) .A lies in the closed positive half-space of P_ and

/_ lies in the closed negative half-space of P_, or (ii) .A lies in the closed

negative half-space of P_ and B lies in the closed positive half-space of P_.

In the first case, the normal vector e_ (_)) x _ points into the half-space
of P._. which does not contain B. This is simply the definition of positive

zj

orientation for f_i. In the second case, the normal vector e_ (_)) x _ points
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into the half-space of Pi_ which does contain B, which is the definition of

negative orientation of f_¢ Thus, the test for applicability of the type (c)
C-function can also determine the orientation of the C-function.

The applicability of f_j can also be tested by looking at the location of

edges of A and B relative to the plane Pi_- Let the two faces of A meeting

at its ith edge be called faces la and 2a, respectively. Then face la or 2a

will lie entirely in one half-space of P_ if any one of the points in that face,

other than a point lying along edge i, lies in that half-space. In particular,

this is true for all of the points along an edge of A which hounds face la or

2a other than edge i. The two edges which meet at the tail vertex of edge

i of A and bound faces la and 2a, respectively, are arbitrarily chosen for

this test. Let these edges be denoted as edges la and 2a. If the two faces

of B meeting at its jth edge are called faces lb and 2b, then they will lie

entirely in one of the half-spaces of P_ if any one of their edges other than

edge j lies in that half-space of Pi_. Similar to A, the two edges of _ which

meet at the tail vertex of edge j and lle in faces lb and 2b, respectively,

are chosen to implement this test and denoted edges lb and 2b. In terms

of these pairs of edges of A and B, the applicability test for the type (c)

C-function f_j becomes:

• Edges la and 2a of .A must lie in the same half-space of P/_.

• Edges lb and 2b of B must lie in the same half-space of P_.

• Edges la and 2a of .A must lie in the opposite half-space of Pi_ from
edges lb and 2b.

If all three of these tests are satisfied, then f_j is applicable and its orien-

tation is positive if edges la and 2a lie in the positive half-space of P/_ and

negative if edges la and 2a lle in the negative half-space of Pi_"

2.4.1 Applicability Constraint Functions

The applicability tests can be implemented by checking the values of a group
of functions of O defined for each C-function. These functions are called

applicability constraint functions or ACFs. One ACF is defined for each of

the features of A or B specified in the applicability tests for the different

types of C-functions. Only the sign of a particular ACF is required in the

test for applicability because this will determine which open half-space of
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the potential separating plane contains the relevant feature of A or/3..,4

or B can be shown to lie entirely in one of the closed half-spaces of the

potential separating plane by examining the signs of all the ACFs for a

particular C-function.

The type (a) C-function f_,¢ is applicable if the edges of/3 that meet

at its jth vertex all lie in the closed positive half-space of the plane P_

containing the ith face of A. The half-space of Pi" containing one of these

edges of 13 can be identified by checking the sign of the component of one of

the two edge vectors for this edge along the unit, outward-pointing normal

vector for face i of A. Hence, the ACFs for fi_,i are taken to be the inner

products of edge vectors for each of the edges of/3 that meet at vertex j

with the unit, outward-pointing normal vector for face i of A.

Let e_ be the edge vector along one of the edges of 13 meeting at vertex

j that has its tail vertex at vertex j. The unit, outward-pointing normal

vectorforfacei of isdenoted¢ asbefore.TheACFfor for
edge k of/3 is then defined as

Edge k of B lies in the open positive half-space of Pi_ if g_ (O) is positive

and it lles in the open negative half-space of Pi_ if g_, (_)) is negative. This

is because _ is chosen to point away from vertex j of/3 and u_ (_)) is

defined as the outward-pointing normal vector for face i of A. The ACF

g_ (6)) will be equal to zero if edge k of/3 lies in the plane P_.

One ACF g_ (6)) is defined for each of the edges of B which meet at

vertex j. There willbe at least three ACFs for any type (a) C-function

since there must be three or more edges meeting at any vertex of B. At

The direction of the edge vectors as indicated by the common choice

for their tailvertex determines that nonnegative values of all the ACFs

indicate that all of the edges of B that meet at its jth vertex lie in the

closed positivehalf-space of P_. Therefore, the type (a) C-function f_i is

applicable at orientation_) if

g_ (_)) __0 V k E {edges of/3 meeting at itsjth vertex}

This is illustrated in Figure 2.10.
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P_ separates .4. and B

Edges I, 2, and 3 meet at vertex j of B

_(_)>o _(_)>o _(_) _o
f_,_ is applicable at this orientation of A

Figure 2.10: Applicability tests for the type (a) C-function f_,_
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Analogously, the type (b) C-function f_j is applicable if the edges of

,4 that meet at its ith vertex all lie in the closed positive half-space of

the plane P] containing the jth face of B. In this case, the sign of the

component of one of the two edge vectors for an edge of .A that meets at

its ith vertex along the unit, outward-pointing normal vector for face j of

B identifies the half-space of P_ that contains this edge of .A. The ACFs

for f_j are the inner products of the unit, outward-pointing normal vector

for face j of B and edge vectors along each of the edges that meet at vertex

i of A.

Let e_ (_)) be the edge vector along one of the edges of .A meeting at

vertex i that has its tail vertex at vertex i. Also let _ denote the unit,

outward-pointing normal vector for face j of B as before. Then, the ACF

for f_j for this edge of Jt is defined as

The choice that e_ (_)) point away from vertex i of A and the definition of

as the outward-pointing normal vector for face j of B imply that edge k

of A lles in the open positive half-space of P_ if g_ (O) is positive and that

it lies in the open negative half-space of P_ if g_(_)) is negative. When

edge k of A lies in the plane P_, the ACF g_ (_)) is zero.

A different ACF g_ (_)) for f_ is defined for each of the edges of A that

meet at vertex i. Any type (b) C-function will have at least three ACFs

because three or more edges meet at any vertex of .A. At least one of the

As was the case for the type (a) C-ftmction, the direction of the edge

vectors of A as indicated by the choice of vertex i as their common tail

vertex determines that nonnegative values of all the ACFs indicate that all

of these edges of A lie in the closed positive half-space of pb. Thus, the

type (b) C-function f_j is applicable at orientation _) if

g_ (_)) >_ 0 V k E {edges of .A meeting at its ith vertex}

This is illustrated in Figure 2.11.

The situation is somewhat more complicated for a type (c) C-function.

To test the applicability of f_j it is first necessary to determine if faces la
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pb separates ,4 and B
Edges 1, 2, and 3 meet at vertex i of .4

_,(c,)>o _,(c,)_>o_(,_)_>o

f_bd is applicable at this orientation of .4

Figure 2.11" Applicabilitytestsforthe type (b) C-function f_b,j
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and 2a of A that meet atitsith edge both liein the same closedhalf-spaceof

meet at the tailvertex of edge i of .A, bound faces Ig and 2a,respectvely,

and share their tailverticeswith edge i of A. Faces la and 2a will both

liein the closed positive half-space of Pig ifthe inner products of e"_(_))

_d_ (_)_h ,_o.o=__e¢,o_,o_(_)×d._e_o,__o_e_,ivo.
These faces will both liein the closed negative hal.f-spaceof P._.if these_3

inner products are both nonpositive.

_e,_o_s _o_S;:__o_os_o_,to_ (_)_ _ (_)_o_o_e_
to be the inner products shown below:

If either one of the edges la or 2a lies in P/_ itself, then either g_ (_) or

g_, (O) will be zero, but both edges cannot lle in P._.,_simultaneously. At

1o.,o_oo_t_o_c_s_ (_)o_,; (_)_ uooo_,o_o_,_, o.oo,_,_o_
_). The criterion that faces la and 2a of ,A both lie in the same closed

half-space of P/_ is

,a (_)_>0_a ,a (_)>_0
or

_ (_)<0 ,_ _ (_)_<0

If this criterion is satisfied, define S_ to be the common sign of g_,, (_)) and

g_ (_)) . S,, --- + when .A lies entirely in the closed positive half-space of

Pi_. Conversely, A lies entirely in the closed negative half-space of P_ if

The next step in testing the applicability of f_j is to determine whether

the two faces of B, lb and 2b, meeting at its jth edge both lie in the same

half-space of P/_. Following the analysis for the faces of ,4, let edge vectors

eb_ and ebb be the vectors along the two edges of B which meet at the tail

vertex of its jth edge, bound faces lb and 2b, respectively, and have the

same tail vertex as the jth edge vector. Then faces lb and 2b of/_ will

both lie entirely in one of the closed half-spaces of Pi_ if the inner products
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of ebb, and d'_, with the normal to P_ are either both nonnegative or both

nonpositive.

The two ACFs for f_,j corresponding to ebb, and d'l, are defined as

Either g_, (O) or g_, (O) will be zero if one of the edges lb or 2b lies in P_

itself. However, both edges cannot lie in P_ simultaneously. At least one

o__e_C__(_) o__;(_)_,,_o=on_oro_ =vo_o=_o=_ _e
criterion that faces lb and 2b of B lie in the same closed half-space of P_ is

_(_) _>0=_ _;(_)>_0
or

_(_) _<0=_ _(_) <_0

satisfied. Then, Sb = + when B lies entirely in the closed positive half-space

of P_ and Sb = - when/_ lies entirely in the closed negative half-space of

P,_.
Once it has been determined that A and B both lie entirely in one half-

space of P/_, the final step in testing the applicability of f_j is to determine

whether these half-spaces are opposite. This is easily done by comparing S,,

and Sb. They must be different for the objects to lie in opposite half-spaces

of P/_. Thus, the third and final criterion for the applicability of f_i at

orientation _) is S_ J: Sb.

If all three of the applicability tests described above are successful, then

the orientation of f_j is easily determined by distinguishing the case where
S_ = + and Sb = -- from the case where S_ = - and Sb = +. In the

first case, f_j has positive orientation at _) while in the second case it has

negative orientation at O. The applicability tests for f_j are illustrated in

Figure 2.12.

2.4.2 The Two Types of ACFs

The four ACFs for the type (c) C-function are defined as scalar triple

products involving either two edge vectors of .A and one edge vector of B or
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P_ separates A and 13

g_. >0 _S_=+ g_, <0
=_ Sb -- --

.f_j is applicable and has positive orientation

Figure 2.12: Applicability and orientation tests for the type (c) C-function
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two edge vectors of B and one edge vector of .4. The scalar triple product
identities

(a, bxe)=(c, axb)--(b, ex a)

can be used to replace the type (C) ACFs with new functions. These new

functions behave identically to the original type (c) ACFs but have the

same form as the type (a) and (b) ACFs, as will be shown below.

Each ACF for a type (a) C-function is an inner product of a normal

vector to a face of A and an edge vector of B. The first two type (c) ACFs,

._ (_) and._ (_),_a_bere,_edb__n_r,roduc_,of_ fo_m,,_ng
the scalar triple product identity,

Since both eal,. (_)) and e_ (_) lie on face la of A, the cross product vector

e_l,, (_)) x e_ (_)) must point either along or opposite to tP_ (6)), the unit

outward-pointing normal vector to face la of .4. Both e_. (_) and e_ (_))

lie on face 2a of .4, so e_, (6)) x e_ (O)must point either along or opposite

to _ (_)), the unit outward-pointing normal vector to face 2a of .4. The

two cross products of edges of .4 can be written as

"/:/x</:/:
where k_ and k_,. are positive constants.

It is not known a priori which choice of signs should be made in the

above equations. However, if one of the cross product vectors points along

the corresponding face normal, the other will point opposite to its corre-

sponding face normal and vice-versa. This results from the fact that .4 lies

entirely in the negative half-space of the plane containing one of its faces.

Since e_. (6)) points away from the tail vertex of edge i of .4, it points into

the negative half-space of the plane containing face la of A or

( ,,-,. <o
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Suppose e_l,, (_)) x _ (_)) = ,k_ u_ (_)). Then

(._(_)._ (_)×_(_))=_ (_ (_)._ (_))<0
From the scalar triple product identity

._ ,- ))
This means that

(._(_)._(._(_)×¢ (_)))<0

But e_m (_)) points away from the tail vertex of edge i of .2,. Therefore, it

points into the negative half-space of the plane containing face 2a of A so

that

Therefore - (e_ (6)) x e_ (_))) points along u_ (_)) and

_ (_)×, (_)=__ _ (_)
A similar argument gives the result that e_a_(6))x _ (_)) : +ka_ u_ (6))

The direction of either e"_ (_)) x e_ (_)) or e_a, ((_) x e_ (0) can be

checked by actually computing the cross product vector and checking the

sign of its inner product with either t#_ (_)) or t#_ ((7)). This need only

be done for one of the cross products since the direction of the other in

relation to the corresponding face normal is opposite to that for the cross

product that is checked.

Once the relation of e_ (_)) x e_ (_)) and e_ (_))x e_ ((_) to the face

normals t#_ (_)) and u_ (6)) has been established, the ACFs g_ (_)) and

g_ (_)) can be replaced by

46



These new functions are proportional to the original ones and behave iden-

tically to the original ACFs in the applicability tests.

Each ACF for a type (b) C-function is an inner product of a normal

vector to a face of B and an edge vector of A. The last two type (c) ACFs,

borev  c dbr nnorprodu  ,of formrro 
the scalar triple product identity,

Since both eb_ and _ lie on face lb of B, the cross product vector _ × eb$

must point either along or opposite to ubu,, the unit outward-pointing normal

vectorto facelb of_. Bothe_ and_ lieonface2bof_, so_ × _ must
point either along or opposite to u_, the unit outward-pointing normal

vector to face 2b of/_. The two cross products of edges of B can be written

as

_×_ = _k_u_

where ku, and k_ are positive constants. The signs in the above equation

are determined by actually computing one of the two cross product vectors

and finding the sign of its inner product with the appropriate normal vector.

Only one of the cross products need be checked because the other will have

the opposite relationship to its corresponding face normal. The proof of

this follows the proof given for the edges and faces of A in the preceding

paragraph.

Once the relation of _ x eb_ and _ × eb_ to the face normals Ub_ and

These new functions are proportional to the original ones and behave iden-

tically to the original ACFs in the applicability tests.

There are now only two distinct forms of the ACFs as functions of _)

used in the applicability tests. A type (i) ACF, denoted gl (_)), is the

inner product of an edge vector of/_ with either an outward-pointing face
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normal for A or its opposite

There is one type (i) ACF for each combination of an edge of B with a face

of ,4. A type (ii)ACF is denoted g" (_)) and is the inner product of an

edge vector of A with either an outward-pointing face normal of/_ or its

opposite.

.,,
There is one type (ii) ACF for each combination of an edge of ,4 with a

face of B. The choice of the sign for the face normal vector and the tail

vertex for the edge vector for a particular type (i) or (ii) ACF depends on

the geometry of A and/3 and on the type of C-function being tested for

applicability.

The applicability tests for type (a), (b), and (c) C-functions in terms of

the two types of ACFs are summarized below.

Applicability of a Type (a) C-function All of the ACFs for the type

(a) C-function f_j corres.ponding to the ith face of .A and the jth vertex of

B are type (i) ACFs. One type (i) ACF is defined for each of the edges of

B which meet at its jth vertex. The ACF for the kth edge of B intersecting

vertex j is

where the tail vertex of e_ must be vertex j. Then, the type (a) C-function

fi=,j is applicable at orientation _) if

g_(_)) >0 V kC(edgesofB meeting at its jth vertex].

The fact that nonnegative values of these ACFs imply that f_,_ is applicable

results from the choice of the plus sign for u_ (_)) and the jth vertex of B

for the tail vertex of _ in the definition of g_ (_)) .

Applicability of a Type (b) C-function All of the ACFs for the typ.e

(b) C-function f_bj corresponding to the ith vertex of .A and the jth face of

B are type (ii) ACFs. One type (ii) ACF is defined for each of the edges
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of .4 which mee.t at its ith vertex. The ACF for the kth edge of A which
intersects vertex i is

where the tail vertex of e_ (_)) must be vertex i. Then, the type (b) C-

function f_j is applicable at orientation _) if

g_i (_)) > 0 V k • (edges of A meeting at its ith vertex}

Nonnegative values of these ACFs imply that f_j is applicable because the

plus sign is chosen for _ and the ith vertex of .4 is chosen for the tail

vertexo._ (_)_ _e_e_ono.,_'(_)

Applicability of a Type (c) C-function Two type (i) ACFs and two

type (ii) ACFs are used to test the applicability of the type (c) C-function

f_,j corresponding to edge i of A and edge j of B. Let vertex i 1 of A be one

of the endpoints of its ith edge and let e_ (_)) be the edge vector along the

ith edge with tail vertex il. Also let vertex jl of B be one of the endpoints

of its jth edge and let _ be the edge vector along edge j with tail vertex jl.

One type (i) ACF is defined for each of the two faces of A, la and 2a, which

m_e__ edge_ Con,_de__he_woedge_e=_o_,¢_(_) and¢_(_) _h
tail vertex il bounding faces la and 2a, respectively. If @_ (_)) × e_ (_))

_oio__.on__ (_)._e_¢_(_)×_(_)_o_0_o_o._e_o_ (_)_
the two type (i) ACFs are

If @_ (_)) × e_ (_)) points opposite to tt'_ (_)), then @_. (_)) × e_ (_)) points

along t_ (_)) and the two type (i) ACFs are

g'_ _,+¢_

One type (ii) ACF is defined for each of the two faces of B, lb and 2b,

which meet at edge j. Consider the two edge vectors ebb, and ebl, with tail
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vertex jl bounding faces lb and 2b, respectively. If _ x @11,points along

t_, then _ x d'_, points opposite to u_ and the two type (ii) ACFs are

If _ x e_ points opposite to ub_,, then _ x eb_ points along t_ and the

two type (ii) ACFs are

The type (c) C-function f_*,j is applicable and has positive orientation at _)
if

It is applicable and has negative orientation at _) if

2.5 The Third Collision Condition

As stated in section 2.3.3, the third collision condition is a check of the

values of all the applicable C-functions at a configuration of interest. Those

with positive orientation must all have nonpositive values and those with

negative orientation must all have nonnegative values at a true collision

point. Suppose that a configuration has been found for which the first and

second collision conditions are satisfied. For such a configuration there is

at least one applicable C-function whose value is zero) The third collision

condition must still be checked at such a configuration to determine whether

it is a valid collision of A and B. One way to check the third collision

condition is to compute the values of all the other applicable C-functions,

besides the ones having zero value, at such a configuration. This section

1Recall from section 2.3.3 that methods for finding such configurations will not be
discussed in this chapter.
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will discuss an alternate method for checking the third collision condition

that does not require the values of the other applicable C-functions.

The third collision condition is used to insure that the features of.A and

/3 defining one of the applicable, zero-valued C-functions are touching. The

new method for checking the third collision condition computes the actual

position of each feature of .4. defining an applicable, zero-valued C-function

to check that it is in contact with the corresponding feature of B. This is

equivalent to checking the third collision condition by computing the values

of the other applicable C-functions since for any configuration of .4 that

Lies on the boundary of CO_s , there is at least one applicable, zero-valued

C-function whose defining features are in contact.

The conditions that determine when a feature of A is in contact with

a feature of// depend on the type of C-function. These conditions are

described in the following paragraphs for the type (a), type (b), and type

(c) C-functions, respectively.

When the type (a) C-function fi_,.i is applicable and has zero value, the

position vector of vertex j of//, h_, must terminate on or inside of face i of

A to satisfy the third collision condition. The vector I_ can be decomposed

into a component in the plane Pi_ of face i of A and one normal to it. All

of the position vectors for points in P/_ have identical components normal

to P3. The vector hj has this same component normal to P_* because f_s is

zero. The component of h_ in P/* itself will determine whether or not the

vertex lies on or within the face of .4. Any face of A is a convex polygon.

A point wiU lle on or inside of this polygon if it lies in the closed negative

half-planes of all the lines containing edges of this polygon. This test can

be implemented using inner products of the component of b_ in P/_ with the

outward-pointing normal vectors to the edges bounding face i of A rotated
to the orientation of interest.

When the type (b) C-function f_j is applicable and is equal to zero, the

position vector of the vertex of A at the configuration of interest, x+ a/(6),

must terminate on or inside of face j of B. The zero value of f_ means

that the component of x + ai (6) normal to plane P_ containing face j of

B is such that it terminates in P_. The component of x + ai (6) lying in

P_ determines whether or not vertex i of A lies on or inside of the convex

polygon representing face j of//. This can be tested using inner products of

the component of x + ai (O) lying in P_ with the outward-pointing normal
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vectors to the edges bounding face j of/3.

If the type (c) C-function f_j is both applicable and zero, edge i of .4

must have at least one point in common with edge j of B to satisfy the third

collision condition. Since the value of f_j is zero, the lines containing these

two edges are coplanar at the configuration of interest. The location of the

intersection point of these two (nonparallel) lines in the plane determines

whether or not the two edges are in contact. When the two edges are in

contact, this point lles in the segments of each line which is the edge of .A

or B. The position vector of any point which lies on an edge of .A or B can

be expressed as the sum of the position of the tail vertex of that edge and

a constant between zero and one times the edge vector itself. The third

collision condition can be implemented by checking the inner product of

the position vector of the intersection point minus the position vector of

the tail vertex of each edge vector with the edge vector itself. The inner

products must be between zero and one for both edge i of .A and edge j of

B for the edges to be in contact.

2.6 Type (c) Contacts with Aligned Edges

The type (a) or type (b) contacts involve a vertex of B or a vertex of .A,

respectively. A vertex is a single point. Therefore, no special alignment can

exist between this point and the plane containing a face of the other object.

Thus, the type (a) and (b) C-functions are true measures of the minimum

distances of the vertices of the objects from the planes containing the faces

of the other object.

A type (c) contact involves an edge of A and an edge of B. Because both

of these edges are finite line segments, there exist configurations of A where

these edges are aligned. As stated in section 2.2, "aligned" means that the

lines containing these two edges are parallel. This includes the special case

where the lines containing the two edges coincide. The type (c) C-functions

are not always true measures of the minimum distances between the lines

containing the two edges for these special configurations of A.

The implications of edge-edge alignments on the use of C-functions to

detect collisions of .A and/_ are discussed below. This discussion includes

a description of the behavior of the type (c) C-function and its ACFs when

the edges are aligned. It will be shown that some of the type (a) and type
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(b) C-functions can be used to detect contact between two aligned edges.

2.6.1 The Type (c) C-function for Aligned Edges

For an orientation _) where the linescontaining edge i of .A and edge j

of/_ are parallel, the cross product of _ (0) and _ which appears in the

definition of the type (c) C-function is the zero vector and f_j = 0. There

is no unique plane which contains edge j of B and is parallel to edge i

of .A in this case. All of the infinitely many planes passing through edge

j of B are parallel to edge i of A. This includes the. planes P_ and P_

containing faces lb and 2b of B which meet at its jth edge. If the two

edges are not also colinear, only one of the infinitely many planes passing

through edge j of B also contains edge i of A. In this case, the two edges

are coplanar, but the value of f_# does not measure the distance between

the lines containing these two edges. If the two edges are colinear, any

plane which passes through edge j of B must also pass through edge i of

.A. The distance between the lines containing these two edges is zero and

f_# is a valid measure of this minimum distance.

Let the two endpoints of edge i of A be vertices i t and i _ of A and let

the two endpoints of edge j of B be vertices jl and j2 of B. When these two

edges are aligned, all of the infinitely many planes passing through edge i

of .4 are parallel to edge j of B, including the planes P_ and P_.. containing

faces la and 2a of A which meet at edge i. The type (a) C-functions defined

by face la and the two vertices jt and j2, J:_,Jl and f_,#2, have the same

value because all of the points along the line containing edge j of B are

at the same distance from plane P_. These two C-functions measure the

distance of edge j of B from P_ along its outward-pointing normal vector

no.zoroif thotwo dges notcoUne=
The type (a) C-functions defined by face 2a and vertices jl and j_ of/_ ,

f_.,Jl and f_,J2, also have the same value whenever edge i of .4 is aligned

with edge j of B. These two C-functions measure the distance of edge j of 8

from P_ along its outward-pointing normal vector u_ (0). This distance

is also nonzero unless the two edges are colinear.

Now consider the type (b) C-functions f/b,_ and f/b ,_, defined by vertices

i 1 and i 2 of A and face lb of/_. Because edge i of .4 is parallel to the plane

P_, these two C-functions have the same value and measure the distance of

edge i of A from P_, along its outward-pointing normal vector _,. Similarly,
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the type (b) C-functions fis._ and f_._ defined by vertices il and i2 and

face 2b have the same value. They measure the distance of edge i of .2, from

plane P_ along its outward-pointing normal vector u_. The distance of

edge i of A from planes P_ and P_ is nonzero whenever it is not colinear

with edge j of/3.

Thus, there are four type (a) and four type (b) C-functions which de-

termine whether or not edge i of ,4 is colinear with edge j of/3 even though

the type (c) C-function f_ itself no longer provides this information for

this special configuration. When the two edges are colinear, all eight of

these C-functions are zero along with f_,_. The distances representing the

values of these eight C-functions when edge i of A is aligned with edge j of

/3 are indicated in Figure 2.13.

2.6.2 Applicability of the Type (c) C-function

The applicability tests were used above to determine if the two features

defining the C-function can be brought into contact such that there exists

a plane which separates A and/3. When two aligned edges are brought

into contact, they are colinear and any separating plane must pass through

the line containing both these edges. For some orientations of ,4, there

may be no such separating plane. For other orientations of ,4, there will

be one or more separating planes for .4 and /3. These possibilities are

shown in Figure 2.14. Since there is no unique plane P_ defined by the

aligned edge vectors, there is no obvious candidate for the separating plane.

The four ACFs defined for f_j assuming P_ was the unique candidate for

the separating plane will not distinguish when the interiors of ,4 and /3

overlap. In fact, they are all equal to zero regardless of whether A and

/3 are overlapping or nonintersecting. This is most easily seen by looking

at the original definition of the four ACFs involving inner products of the

cross product vector _ (_)) × _ with edge vectors of ,4 or/3. Since this

cross product is the zero vector when the edges are aligned, all four ACFs

are zero. The type (i) and (ii) ACFs which replaced the original type (c)

ACFs are also zero when the edges are aligned. The two type (i) ACFs are

inner products of _ with -4-tt'_ (_)) and 4-t_ (_)). By definition, tt'_ (_))

and u_ (6)) are perpendicular to edge i of ,4. Since edge i is parallel to

edgej, =d d =d thetwo
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The four type (a) C-functions

_\ FACE ,_b

The four type (b) C-functions

Edge i of A and edge j of/_ are perpendicular to the page. Vertices i 1 and

i2 of ,,4 are depicted as a single point on A. Vertices jl and j2 are depicted

as a single point on//.

Figure 2.13: The type (a) and (b) C-functions for aligned edges
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./ SE'PA_AT 1NG
PI_A N E_S

_ _ _ °

Multiple separating planes exist for this orientation

/
/

/

Only one separating plane exists for this orientation

No separating planes exist - A and B overlap for this orientation

Edge i of A and edge j of B are colinear and are perpendicular to the page.

Figure 2.14: Separating planes for the type (c) C-function for the case of

aligned edges
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inner products are zero. The two type (ii) ACFs are inner products of

4(6) with ± t/u,and ± t/_b. But t/u,and u_ are perpendicular to edge j

of B which is parallel to edge i of .4. Therefore, _ (_) is perpendicular to

it/u, and ±t/_, and the two type (ii) ACFs are zero.

Four of the many potential separating planes for .4 and B which pass

through the line containing edge i of A and edge j of B are the planes P_,

p_, pb, and Pg. Because of convexity, .4 lies entirely in the intersection

of the closed negative half-spaces of P_ and P_ and B lies entirely in the

intersection of the closed negative half-spaces of P_, and Pg. Part of .4 lles

in the closed negative half-space of both pb and Pg and part of B lies in

the closed negative half-space of both P_ and P_ when the interiors of A

and B overlap. If the interiors of .4 and B do not overlap, then A must

lie entirely in the closed positive half-space of at least one of the planes

pb and pb and B must lie in the closed positive half-space of at least one

of the planes P_, and P_,. This means that one or both of the planes P_,

and P_, as well as one or both of the planes pb and P_, are separating

planes for ,4 and B. Plane P_ is the candidate separating plane for A and

B in the tests of applicability for the type (a) C-functions f_,,_ and f_._2

while P_ is the candidate separating plane for .4 and B for the type (a)

C-functions f_,i_ and f_,d_" The candidate separating plane for ,4 and B in

the applicability tests for tlie type (b) C-functions sf_x, u, and f_, _ is P_ and

for the type (b) C-functions f_,_, and f_2,_, the candidate separating plane

is P_. At least two of these four type (a) C-functions and two of these four

type (b) C-functions are applicable when the interiors of .4 and B do not

overlap. This is illustrated in Figure 2.15. The applicability tests for these

type (a) and (b) C-functions provide the information about overlap of A

and B which cannot be determined using the applicability tests for f_,_ at

orientations where the edges are aligned.

2.6.3 The Third Collision Condition

The preceding sections showed how the four type (a) C-functions f_,d_,

f_,,J2, f_,,J,, and fg,,j_ and the four type (b) C-functions fb,u,, fb,u,, fb,z,

and fb a, can be used to determine when edge i of 51. is colinearwith edge

j of B and when the interiors of ,4 and B do not overlap for the given

orientation of .4. Even if this is the case, it is still possible that there is
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/
/

..

/

P_ separates .4 and B _ f_,,j, and f_,,J2 are applicable
b b

f_, u, arepb separates ,4 and/3 =_ f_,_, and applicable

v_CE_

--'_//i \ _. / I \ FAC.E Zb

/ \

None of the planes P_, P_,, pb, p_ separates A and B

None of the eight C-functions axe applicable =_ ,4 and B are overlapping

Edge i of .A and edge j of B are colinear and are perpendicular to the page.

Figure 2.15: Applicability of the type (a) and (b) C-functions for aligned

edges
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no contact between the edges of A and B because it is not known whether

there are any points on the line containing the two edges which lie in both

of the finite line segments that are the two edges. This is the reason for the
third collision condition.

In this casee, the third collision condition can be implemented by com-

puting the position of the features defining the type (a) and (b) C-functions

as well as by checking the values of all the applicable C-functions at the

configuration of interest. If these edges do have one or more points in com-

mon then at least one of the vertices i l and i2 is touching the boundary

of the two faces lb and 2b of B or at least one of the vertices jl and j2 is

touching the boundary of the faces la and 2a of .A. The position vectors

for any of these vertices at the configuration of interest will terminate on

the boundary of the faces. If the edges do not have any points in common,

then neither of the vertices il and i2 will be touching faces lb and 2b of

and neither of the vertices jl and j2 will be touching the faces la and 2a

of A. The corresponding position vectors will then not terminate on the

boundary of the faces and the edges will not be in contact.

2.6.4 Detecting Collisions of Aligned Edges

Since the type (c) C-function and its ACFs do not provide any useful infor-

mation at orientations where the two edges are aligned, f_j can either be
ignored or included in the check of the three collision conditions. For the re-

mainder of this thesis, it is assumed that f_j is applicable for all orientations

where the two edges defining it are aligned and where all four of its ACFs as

well as the function itself are equal to zero. With this assumption, the first

two collision conditions are always satisfied at these orientations for any

position x. In addition f_j satisfies the third collision condition regardless

of the assumed orientation. Hence, the answer obtained by testing the three

collision conditions on the remaining C-functions is not changed by taking

f_j to be one of the applicable C-functions. Actual collisions between the

two aligned edges are detected from the four type (a) C-functions f_,&,

fu,d2," f_,.,j,,_ and f_,J2_ and the four type (b) C-functions f_b_,u,, f_2,1b,s f_,,l,,b

and fb2,2b. These C-functions are said to subsume the type (c) C-function

at these orientations because they provide the information necessary to

distinquish collisions between the aligned edges without checking f_,j.
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2.7 Allowable Zeros for C-functions

If the configuration of .A is viewed dynamically as the trajectory of a moving

point in CmV_e (.A), then there are two different ways in which the trajectory

can intersect the boundary of CO_s. In the first and only relevant case,

the trajectory approaches the boundary of CO_ from free space. The first

contact between .A and H will occur when the trajectory of .A first intersects

the boundary of CO_B in this manner.

The second way that a trajectory of .A can approach the boundary of

CO_ is from a point inside of CO_s. When the trajectory of .A approaches

the boundary of CO_ in this way, .A is moving away from configurations

where its interior overlaps with the interior of/3. This case does not rep-

resent a valid collision because it is not physically possible for the interiors

of the rigid solids representing A and/3 to overlap. Unfortunately, a static

check of the three collision conditions at some configuration of .A which Lies

on the boundary of CO_s cannot distinguish between these two cases.

The applicable C-functions determine the boundary of CO_B and at least

one of them is zero when the trajectory intersects CO_s. Since a physically

possible trajectory always begins outside of CO_v , then at least one of these

C-functions must approach zero from a region where its value is positive

if it has positive orientation or from a region where its value is negative

if it has negative orientation. For the purposes of collision detection, only

the zeros of a C-function which occur when it is applicable and which also

satisfy the above criterion represent potential collisions. These zeros are

called the allowable zeros of the C-function. Some examples of allowable

zeros are shown in Figure 2.16.

The definition of allowable zeros adds to the first two collision conditions

a knowledge of the way in which the trajectory of .A behaves as it approaches

CO_s. An allowable zero can occur when the trajectory intersects that

part of the C-surface where the C-function is applicable but which doeJ not

lle in the appropriate half-spaces of the other applicable C-functions and

hence is not part of the boundary of CO_s. The third collision condition is

still necessary to determine if an allowable zero represents a point on the

boundary of C O_B.
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f 5 TRAO'ECTORY OF

._ _ CON F IGURAT I ONx oF

•

fl, f2, and f4 are applicable C-functions

f3 is a C-function which is not applicable

Function If1 f2 fz If4

AUowable zeros 3 1, 5, 6 - -

Other zeros - 2 4 7

Points 1 and 3 do not satisfy the third collision condition

Point 5 is the first contact between .A and B

Shading indicates the open half-space where an applicable C-function with

positive orientation is negative or the open half-space where an applicable

C-function with negative orientation is positive.

Figure 2.16: Allowable Zeros for C-functions
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2.8 Configuration Space Obstacles for Non-

convex Polyhedra

The discussion of the configuration space obstacle in the preceding sections

o_[ this chapter has assumed that both A and B are represented by single

eonvez polyhedra. This section considers the more general case where .A

and B are assumed to be noneonvez polyhedra.

Any nonconvex polyhedron can be modelled as the union of two or

more convex polyhedra. If either the moving object .A or the obstacle B

is nonconvex, it can be represented as a union of convex polyhedra. This

union is generally not unique because there can be more than one way to

decompose a nonconvex polyhedron into convex pieces. Let S, be a set of

n,, convez polyhedra A1,A2,... ,.A_ whose union is A and let Sb be a set

of rib eonvez polyhedra B1,B2,... ,B,., b whose union is B.

This model of A or B as the union of the elements of a set of convex

polyhedra can be extended to include the special case where either A or B is

a single convex polyhedron. In this case there will be only one element in the

set of convex polyhedra representing A or B. If A is a convex polyhedron,

n_ = 1 and S_ = (,41} - A. Similarly, if B is a convex ployhedron, then

nb ---- 1 and Sb = {BI} -- B.

Each pair of convex polyhedra .A_ E S_ and Bj E Sb generates a configu-

ration space obstacle CO_ which can be characterized using the methods

of the preceding sections. If the surface of A is just touching the surface of

B then the surface of at least one of the convex polyhedra A_ is touching

the surface of at least one of the convex polyhedra B_. This means that

any configuration on the boundary of COOs is on the boundary of at least

one of the COs_ i If the interiors of A and B overlap, then the interiors

of at least one pair of convex polyhedra .A_ and Bj are also overlapping.

Any configuration inside of COOs must also lie inside of at least one of the

CO_sj. Therefore, the overall configuration space obstacle COr_ can be

written as CO_s _ U CO_s_ ... U CO_. The first point where a trajectory

of the configuration of A which starts in free space intersects the overall

CO_s must be the first intersection point of the trajectory with any of the

boundaries of the CO_ for the pairs of convex polyhedra.

62



2.9 A Conceptual Collision Detection Pro-

cedure

The concept of allowable zeros of a C-function and the third collision con-

dition form the basis for a simple collision detection procedure. Following

the notation of section 2.8, let the moving object .4 be represented by the

set S_ of n_, eonvez polyhedra .41, .42,... ,.A_ and let the obstacle 8 be

represented by the set Sb of nb cortvez polyhedra BI, B2,... ,/_,_. The pro-

cedure considers each of the rt_ "nb pairs of convex polyhedra Ai E ,5'_ and

13j E Sb Separately. The steps listed below are performed for each of the

C-functions defined by the features of Ai and/_j.

First, all the values of time which represent allowable zeros of the C-

functions along the trajectory of A are found. These values form a list {t'}

of potential collision points between the features of _ and Bj which define

each C-function. Then, for all t' in the list, the third collision condition

is checked by using either of the two methods previously discussed. Any
value of t' for which this condition is not satisfied is discarded since it cannot

represent a valid collision of Ai and/_.

After these steps have been performed for all of the C-functions, all

the lists of potential times of collision are sorted to find the one with the

smallest value, tlj. This is the time of first contact between Ai and Bj. If

no values of time remain in any of the lists, then no collision will occur

between .A_ and Bj for the given trajectory of -4.

The result of performing the above procedure for all of the pairs of

convex polyhedra A_ and /_j is a list of the times of first contact {tiC}.

The final step in this collision detection procedure is to sort the tij for

the one with the smallest value. This is the point where the polyhedron

-4 ---- A1 U -42 U ... U A,_ first comes into contact with the polyhedron

/_ =/31U B2 U ... U/_,_. If there are no values of time tlj generated by any

of the pairs of convex polyhedra making up A and 8, then no collision will

occur between -4 and/_ along the given trajectory for A.

In the special case where both -4 and B are single convex polyhedra,

there is only one pair of convex polyhedra to be considered by the collision

detection procedure. The only C-functions to be examined are then those

defined by the features of A1 - .4 and/_1 - B. The smallest value of time,

t11, where all three collision conditions are satisfied is then the time of first
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contact between A and B. If there is no value of time tu where all three

collision conditions are satisfied, then A and B do not collide at any point

along the given trajectory of .A.

One of the factors influencing the efficiency of the collision detection

procedure described above is the number of convex polyhedra rt,, in set S_,

and rtb in set ,-qs. As mentioned in section 2.8, when A or/3 is a noncon-

vex polyhedron, these sets are not unique. A nonconvex polyhedron can

be divided into convex polyhedra in many ways. In particular, the convex

polyhedra can be chosen such that they are overlapping or such that they

are nonoverlapping. The collision detection procedure is valid for sets of

either overlapping or nonoverlapping convex polyhedra whose union is A

or B. If the convex polyhedra are chosen to be overlapping, there is some

redundancy involved in checking each pair of convex polyhedra separately.

However, the overall efficiency of the procedure may improve if the rep-

resentation using overlapping convex polyhedra results in fewer elements

in Sa or Ss than a representation using nonoverlapping convex polyhedra.

This is due to the reduction in the number of C-functions to be examined

resulting from the smaller value for rt_ or rtb.

One of the most important steps in the collision detection procedure

outlined above is finding the allowable zeros of a C-function. This requires

methods for finding the zeros of the C-function and for finding the regions

where it is applicable along the trajectory of .A. Clearly, the details of

any such method depends on the assumptions that are made regarding the

motion of .A relative to B. Methods of finding the applicability regions

and the zeros of the C-functions when A is moving with constant linear

and angular velocities relative to B are developed in Chapters 3, 4, and

5. A complete collision detection algorithm is described in Chapter ft.

This algorithm is similar to the conceptual procedure discussed in this

section, but it incorporates some modifications that are possible only for

the particular trajectory of A to be considered in the following chapters.
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Chapter 3

Applicability for Constant Angular

Velocity "

The concept of applicability as it is first presented in section 2.3.1.2 refers

to a fixed configuration, or more precisely a fixed orientation, of the moving

object ,4. Later in section 2.3.2, a more global view is taken with the in-

troduction of applicability regions. The applicability region of a C-function

is the set of all points in the rotation space of A for which the function

is applicable. For these orientations of A, there is no overlap of the inte-

riors of A and B when A has been translated such that the features of A

and/_ defining the C-function are in contact. The applicability regions axe

determined by the shapes of the two polyhedra representing A and B. As

the trajectory of ,4 moves through C,_., (,4) it will typically pass through

many applicability regions for different C-functions. It may or may not

pass through the region where a particular C-function is applicable.

The collision detection algorithm must search for points along the tra-

jectory of .A where a C-function has allowable, zeros. Since by definition

allowable zeros of a C-function can only occur when it is applicable, it

would be advantageous to predict when the trajectory of A lles inside the

applicability region of a given C-function. The search for zeros of the C-

function could then be restricted to these parts of the trajectory of A. If

the trajectory of A were such that it always remained outside of the appli-

cability region of a C-function, no zero search would be required for that
function.

The ability to predict when the trajectory of A will pass through the

applicability region for a C-function depends on knowledge of the rotational

motion of A. The applicability tests for the three types of C-functions

developed in section 2.4 introduced the ACFs as functions of the orientation

of ,4. If the orientation of ,4 as a function of time along the assumed

trajectory is known, then the vectors representing the features of .A can

be expressed as vector-valued functions of time in reference coordinates.

The ACFs can then be converted to scalar functions of time using these

expressions for the edge vectors and face normals of A as functions time.
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Those intervals of time when the values of the ACFs are such that the
applicability tests are satisfied are the applicability interval_ for this C-

function. These are the only intervals where allowable zeros of this C-

function may occur.

The remainder of this chapter will discuss how to find the applicability

intervals for the case where .A is rotating with constant angular velocity.

The form of the type (i) and (ii) ACFs as functions of time is derived in

section 3.1. A brief discussion of the special case of zero angular velocity,

where ,4 has fixed orientation, is included in this section. A graphical

interpretation of the time behavior of the ACFs based on the behavior

of the vectors representing the edges and faces of A and /_ is presented

in section 3.2. Then, section 3.3 defines the applicability and orientation

timelines that result from merging the ACFs for a C-function according to

its applicability criteria. This section also gives an example of finding these

two timelines for each of the three types of C-functions.

3.1 The ACFs for Constant Angular Veloc-

ity

In order to derive the form of the ACFs as functions of time, it is necessary

to choose a means of expressing the orientation of ,4, previously denoted by

_). This thesis will use quaternions in all subsequent derivations, although

identical results can be obtained using rotation matrices or Euler angles.

First, a brief review of the use of quaternions to express the orientation

of a rigid body will be given. The relationship between the elements of

the quaternion and the yaw, pitch, and roll Euler angles is included in this

review. Next, the equation for a vector representing a feature of ,4 as a

function of time is derived using the quaternions describing rotation of A

with constant angular velocity. These vector-valued functions of time are

then used to derive the form of the two types of ACFs as functions of time.

Finally, the different cases for the time behavior of the ACFs are described.

3.1.1 Quaternions and Quaternion Algebra

A quaternion is a set of four parameters that can be used to describe the

orientation of a rigid body relative to a reference coordinate system. These
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four parameters can be represented as an ordered sequence of a scalar and

a three-dimensional vector. The quatemion Q E R 4 will be denoted by

Q=[q qT]r

where q is the scalar representing the first element of the quaternion and q

is a vector representing the last three elements of the quaternion.

Some properties of quaternion algebra that are useful in expressing ro-

tations are listed below:

• The identity quaternion is Qi = [ 1 0T ]T.

• The inverse of the quaternion Q will be denoted Q-1 and is defined

to be Q-1 = [q _(t T IT.

• The product of the two quaternions

ql=[ql qT1 ]r and Q_=[ q2 q_ ]r

is defined to be the quaternion Qa = Q1 Q2 where

Q3 = [qa q_ IT

= [qlq2--((tl, q2) (ql(t2+q_ql+qlx q2) T IT

• In general, the terms in a quateraion product do not commute so that

ql Q2 ¢=q2ql.

• From the definition of quaternion products, it can be shown that

Q31 = (qIq2)-1 _ Q_IQ_-I

• A unit quaternlon Q, is a quaternion whose elements q,_ and (h satisfy

the condition q_ + (q u, qu) = 1.

• The product of a unit quaternion and its inverse quaternion is the

identity quaternion and, in this special case, the terms in the product

do commute. Hence, Q,,O_ 1 = Q_IQ, = Oa.
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ELder's theorem states that any sequence of rigid body rotations is equiv-

alent to a single rotation about one axis. Let r be the unit vector along this

single axis of rotation. The three components of r are the direction cosines

of the axis of rotation relative to the three reference coordinate axes. Let

0 represent the angle of rotation about the axis r. Then, the quaternion

Q,. = [ cos(8/2) sin(8/2)r y ]T

can be used to express this rotation. O_. is a unit quaternlon because

cos2(0/2) + sin_(0/2)(r, r) = cos2(8/2) + sin2(0/2) = 1. The restriction

that O_. be a unit quaternion means that only three of its elements are

independent. This reflects the fact that the general motion of a rigid body

has only three rotational degrees of freedom.

Consider a vector from the center of rotation of the rigid body to one of

the points on the body. Let v represent this vector expressed in reference

coordinates before the rotation of the body about axis r through angle _.

If v' denotes this same vector expressed in reference coordinates after the

rotation, then

v' = -1

When the vector v is treated as a quatemion having zero scalar component,

this expression for v' becomes the product of three quaternions and the

result can be computed using the definition of the product of quaternions

given above.

A composite rotation resulting from a sequence of rotations can be ex-

pressed as a product of quaternions. For example, suppose that the rigid

body is first rotated through an angie 81 about axis rl and then through

These two rotations are represented by thean angle 02 about axis r2.

quaterrdons

Qrl =

Q,.2 =

[ cos(81/2) sin(/_l/2)ff ]T

[ cos(0 /2) sin(0 /2)ff iT

The composite rotation is represented by Q,._ O_.1. Therefore, the vector

initially expressed as v in reference coordinates becomes

after these two rotations of the rigid body.
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Three parameters that are frequently used to describe the orientation

of a spacecraft are the yaw, pitch, and roll Euler angles. Any orientation

represented by Euler angles is viewed as the result of three sequential ro-

tations from the initial orientation where the body coordinate axes of the

rigid body representing the spacecraft are parallel to the corresponding ref-

erence axes. For the yaw, pitch, roll Euler angle sequence, the first rotation

is a rotation about the Z, = Z axis through the yaw angle 0y. The second

rotation is a rotation about the Y_ body axis through the pitch angle Ov.

As a result of the first rotation, this axis may no longer be aligned with

the Y axis. The third and final rotation is a rotation about the X, body

axis through the roU angle 0,. Again, the X, body axis is, in general, no

longer aligned with any of the reference axes after the first and second ro-

tations. The elements of the quaternion O_ that represents the composite

rotation resulting from these three sequential rotations are given, without

proof, below:

q_ = + sin(O_/2)sin(Op/2)sin(O,/2)+ cos(O_/2)cos(Op/2)cos(O,�2)

and

- sin(Oy/2)sin(Op/2)cos(O,/2)+ cos(Oy/2)cos(Op/2)sin(O,/2)
+ sin(0_/2) cos(0_/2)sin(0,/2) + cos(0_/2)sin(0_/2) cos(0,/2)

÷sin(O_/2)cos(O_/2)cos(O,�2)- cos(O_/2)sin(6/2)sin(0,/2)

It will be convenient to express the initial orientation of .4 for the examples

presented later in this chapter and in Chapters 6 and 7 by giving the yaw,

pitch, and roll angles, 0y, 0p, and 0,, instead of listing the dements of the

corresponding quaternion.

More detailed treatments of quaternions and other methods of repre-

senting rigid body rotations can be found in references [19,20,21].

3.1.2 Expressing the Vectors Representing the Fea-

tures of A as Functions of Time

Let O_, be the quaternion representing the initial orientation of .4, that is

the orientation of.4 when _ = 0. Also let 5 be the constant vector represent-

ing the angular velocity of .4. Then the angular speed w is the magnitude

69



of this vector and the unit vector u_ lles along the axis of rotation where

Since J is constant, the quaternion O_(t) representing rotation of .A from

its initial orientation as a function of time is

O_(t)--[ cos(_t/2) sin(_t/2)u_ IT

The quantity _t is the angle of rotation about the axis u_. The quaternion

Q(t) representing the overall orientation of .A as a function of time is simply

the productof the two quater_ons O_(t) and 0.o,q(t) = O.(t) 0.o.
Any vector v _ representing a feature of .A. can be written as a function

of time using the above equation for Q(t). From the preceding section,

v_(t) = Q(t),C'Q(t)-l= O_(t) (O_v_O_ -1) O_(t) -1

The term in parentheses is a constant vector which represents the vector

v" expressed in reference coordinates at the initial time. If this vector is

denoted v_(0), then

v"(t) = O_(t)v"(O)O_(t) -1

Performing the indicated quaternion multiplications treating "¢'(0) as a

quaternion with zero scalar component gives

¢(t) =
[(v_(0), u_) u_] + [¢'(0) - (v_(0), u_) u_] cos@t) + [u_ x ¢'(0)] sin@t)

The three vectors in square brackets axe constant vectors. Let the first

constant vector be

¢_ = <V_(O),U_>U_
This is just the component of v"(O) along the rotation axis u_. Let the

vector which is multiplied by the cosine term be

¢_ = V_(O)- (,_(0), U_) U_ = ¢(0)-

This is the component of _f(0) normal to the rotation axis u_. Finally, let

the vector which is multiplied by the sine term be

¢_ = ._ × ¢(0)
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This vector is normal to both v_(O) and the rotation axis u_. Except for

the special case where v_(O) lies along the rotation axis, 4, _, and

form an orthogonal triad. The vector _ as a function of time is

v"(t) = _ + _ cos(_t)+ _ sin(_t)

When v_(O) lies along the rotation axis, both v_2 and _ are zero and v _ =

= _(0) is constant.

3.1.3 Derivation of the Type (i) and (ii) ACFs as
Functions of Time

A type (i) ACF is the inner product of an edge vector of/3 and either the

outward-pointing normal to a face of A or its negative. Assume without

loss of generality that a particular ACF gi is defined using the plus sign for

the outward-pointing normal vector to the face of .A so that

The face normal vector tf can be written as the sum of three terms following

the procedure described above. Let ua(0) = O_ uaQ, -1 be u_ expressed in

reference coordinates at the initial time. Then the outward-pointing normal
vector tt' as a function of time is

¢(t) = ,_ + _ cos(,,,t)+ _ sin(,ot)

where

= u_(0)-
u_ = u_ × e(0)

Substituting this into the definition of the type (i) ACF gives the following

expression for gi as a function of time

The three inner products appearing in this equation are all constant.

A type (ii) ACF is the inner product of an edge vector of .A and ei-

ther the outward-pointing normal to a face of B or its negative. Again,
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assume that a particular ACF gii is define using the plus sign in front of

the outward-pointing normal vector to the face of B so that

If e=(0) = O,o e= O.o-1 is the edge vector e= expressed in reference coordinates

at the initial time, then e_ as a function of time is

e=(t) - _ + _ cos(wt)+ _ sin(wt)

where

- e=(0)-
= × e=(0)

Substituting this into the definition of the type (ii) ACF yields

The three inner products appearing in this equation are also constant.

Now suppose that .A. is not .rotating so that 03 = O. Then the vectors

representing features of .A do not vary with time. Let 0,0 denote the fixed

orientation of .A.. The outward-pointing normal vector u_ for any face of

A is simply the constant vector u=(t) - u=(0) = O_ u= O_ -1. The type (i)

ACF gl as a function of time is

¢(t)--

Similarly, the edge vector ee for any edge of .4. is the constant vector e_(t) =

e_(0) = Qoe_O,, -1 when 03 = 0. The type (ii) ACF gll as a function of

time is

gi'(t) =(_(0),u _)

In this case, both gi and gii are constants.

Thus, when 03 is constant, the two types of ACFs have identical forms

as functions of time. Let g denote a single ACF of either type (i) or type

(ii). The general form of g can be written as

g(t) = gl +g2cos(wt) +g3sin(wt)

Table 3.1 lists the values of the scalar coefficients gl, g2, and g3 for the two

types of ACFs when J is constant.
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g(t) +g cos( t)+ g sin( t) I
Type of ACF gz g2 g3

..

G=O

(i) (_, _(0)) 0 0

(") (_(0), _) 0 0

Table 3.1: The constant coefficients for the two types of ACFs as functions
of time

3.1.4 The Behavior of an ACP as a Function of Time

There are two possibilities for the behavior ofg(t) as a function of time.

One possibility is that the coefficients of the two sinusoidal terms are both

zero, that is g2 = ga = 0. Then the ACF is equal to the constant term gl,

which may be positive, negative, or zero. There axe three ways that this

can occur. First, the angular velocity of A may be zero. Second, if the

angular velocity is nonzero, the vector representing the edge or face normal

of .A may lie along the axis of rotation. In both of these situations the

vectors representing features of A are constant so that the inner products

defining the ACFs are also constant. Finally, the vector representing the

edge or face normal of/3 may lie along the axis of rotation. In this case,

this vector is perpendicular to the two components of the edge vector or

face normal of A which appear in the inner products defining g2 and g3.

The second possibility for the behavior of g(t) is that one or both of

the coefficients of the two sinusoidal terms is nonzero, that is either g2 # 0

or ga # 0 or both. The presence of the sinusoidal term means that g(t) is

a periodic function of time with period 2_r/w. The last two terms in the

equation for g(t) can then be combined into a single sinsoidal term as

g(t)= +c cos +¢,)
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where

c = ((g2)', , c > o

G is the amplitude of the cosine wave. The constant term gz represents a

vertical shift of the cosine wave from its original symmetry around zero.

The phase angle eg determines the horizontal shift of the cosine wave along

the time axis.

The shifted sinusoidal form of g(t) makes it easy to find the points, if

any, where g(t) = 0. These are the points where g(t) changes sign and they

bound the regions where its value is positive or negative. For convenience,

g(t) wiU be regarded as a periodic function of wt + eg in the following

discussion.

There are three cases for the behavior of g(t) depending on the mag-

nitude of the vertical shift gl relative to the amplitude of the cosine term

G. These three cases are illustrated in Figure 3.1. First, if Ilgl/GII _> 1

and 91 < -G < 0, then the value of the ACF g(t) is always less than

or equal to zero. In other words, g(t) is nonpositive for the entire period

wt + eg E [0, 2_']. When gl < -G, g(t) is strictly negative. For the case

where gl = -G, g(t) equals zero only at the point where cos(wt +¢g) = +1

which is where wt + _ = 0. The value of g(t) is less than zero at all other

values of wt + Cg.

Now suppose that [Igl/G[I _> 1 but gl >_ G > 0. Then the value of the

ACF is always greater than or equal to zero. Hence, the function g(t) is

nonnegative for the entire period wt + ¢_ E [0, 2_r]. When gl > G, g(t) is

strictly positive. If gl = G, then g(t) is equal to zero only at the point

where cos(wt + Cg) = -1 which is where wt + Cg = _'. The value of g(t) is

greater than zero at all other values of wt + Cg-

Finally, if Hgl/GN < 1, then the ACF takes on both positive and negative

values in a single period of wt + Cg. The value of g(t) is zero at the two

points where
--gl

¢os(,,,t+ - a

or where

{=
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Figure 3.1: The three cases for g(t) when G _ 0
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Let these two points be called al and a2 where ot_ > al and or1, a_ E (0, 2r¢).

The ACF is nonnegative in the intervals cat + Ca E [0, al] and cat + Cg E

[a_,2_r]. It is nonpositive in the interval cat + _bg E [al, a2].

3.2 A Graphical Interpretation of the ACFs

The sinusoidal nature of the ACFs can be predicted by visualizing the

behavior of the vectors representing the edges and faces of A when A is

rotating with constant angular velocity. This section presents a qualita-

tive description of the ACFs based on this graphical interpretation of the

vectors used in their definitions. Quantitative information needed for the

applicability tests, such as the values of cat where an ACF changes sign, is

obtained from the equations for the ACFs derived in the preceding section.

Therefore, this section may be skipped if the reader is satisfied with the

mathematical treatment of the ACFs already presented.

In section 3.1.2, the time behavior of any vector v_ representing a feature

of A was shown to take the form

v"(t) = _ + _ cos(cat) + _ sin(cat)

where the three constant vectors _, _, and _ are

Consider the most general case where all three component vectors for v _ are

nonzero and mutually orth0gonal. The first vector v_l lies along the rotation

axis and contributes a constant component to _f(t). The contribution of

the second and third vectors, _ and _, to v_(t) varies with time. These

two vectors lie in the plane whose normal vector is u_. Furthermore, the

magnitudes of these two component vectors are equal. This can be proven

by comparing the two inner products

I1_11_ = <_, _)

The first inner product is

II_ll' = ((¢(0)- ¢_),(¢(0)- ¢_)>
= <,e(0), ¢(0)) - 2 (¢(0), _) + (_, ¢_)

76



Using the definition of _ to evaluate the inner products on the right-hand

side of the above equation and combining similar terms gives

I1_112= <,_(0),¢(0)) - <_(0), _)2

The second inner product is

I1_112--<(u_x ¢(0)),(u_ x ¢(0)))

This can be rewritten using the scalar triple product identity (a, b × c) =

(b, e x a) where (_ × v"(0)) takes the place of a, tb takes the place of b,

and v_(0) takes the place of e. This produces

I1_11_ -<u_, ¢(0) x (u_ x ¢(0)))

The second term in the above inner product is a vector triple product. It can

be simplified using the vector triple identity ax (bx c) = (a, c)b-(a, b)e.
The result is

II_ll_ = <u_,{<¢(o),v_(o))u_-<_(o), _)_(o))>
= <¢(o), ¢'(o)) - <¢(o), ,,_)2

Therefore II_11= II_1t.
Because _ and _a have equal magnitudes and axe multiplied by sine and

cosine terms in the equation for v"(t), the time-varying component of v"(t)

sweeps out a circle in the plane containing these two vectors. The radius of

the circle is the common magnitude of the two vectors. The time-varying

component of v_(t) starts at _ when wt = 0° and travels counterclockwise

around the circle when viewed from a point in the half-space of the plane

containing _ and _ that also contains _. This component reaches

whenwt = 90 ° and returns to _ at the end of the period when wt =

360 °. The circle formed by the time-varying component of v"(t) is shown

in Figure 3.2.

When the circular behavior of the time-varying component of v_(t) is

viewed in combination with the constant component contributed by _, it

can be seen that the vector v_(t) traces out the surface of a right circular

cone as At rotates about U_. This cone is illustrated in Figure 3.2. The axis

of this cone is the constant term _, which lies along the rotation axis. The

"base" of this cone is the circle formed by the time-varying component due
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The circle traced out by the time-varying component of v_(t),

cos(cat) + _ sin(cat). This circle is the "base" of the cone shown

below and has radius H_11 = II_11. v_ points out of the page.
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The cone formed by v _ as A "otates with constant angular velocity.

e(t) = _ ÷ _ co._(_t)÷ _ sin(cat)

Figure 3.2: A pictorial representation of the behavior of _ as a function

of time
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to v_2 and _. The height of this cone is ]1_11 and the radius of the base is

JI = II 11.
The cones swept out by the edge vectors and face normals of .4 can be

used to give a graphical interpretation of the time behavior of the two types

of ACFs presented in section 3.1.4. The following three sections discuss this

interpretation for sinusoidal type (i) and (ii) ACFs and for the special case

of a constant ACF. For convenience, it is assumed that the plus sign is

chosen for the face normals appearing in the definition of the ACFs.

3.2.1 The Type (i) ACFs

Recall that a type (i) ACF is the inner product of an edge vector of B and
a face normal vector for ,4

The value of gi(t) depends on the location of the edge vector eb relative

to the rotating plane P" passing through the origin and having normal

vector u_(t). P= remains parallel to the plane that contains the face of

.2, whose outward-pointing normal vector is u"(t). As .4 rotates about u_

with constant speed w, u_(t) sweeps out a cone with axis along either +u_

or -U_ depending on the sign of the constant component of u_(t), _.

Consider the line in P" which lies in the same plane as u_ and u". As the

plane P" rotates, this line sweeps out two cones, one with axis along +t_

and one with axis along -u.,. P" itself always remains tangent to these
two cones as it rotates.

One of the two cones swept out by P" will have its axis pointing in the

same direction as the axis of the cone swept out by u"(t). Any vector which

lies inside this cone remains in the positive half-space of P" as it rotates

around t_. For this reason, this cone will be referred to as the positive cone.

The other cone formed by P" as it rotates will be called the negative cone.

A vector which is fixed inside the negative cone remains in the negative

hail-space of P" as .4 rotates around t_. Any vector which lies outside of

both the positive and negative cones will be in the positive half-space of pa

for some part of a rotation cycle and in the negative hail-space of P" for

the remaining part of the cycle. The positive and negative cones formed

by the rotation of P" are shown in Figure 3.3.
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Figure 3.3: The two cones formed by the plane P_'

The three cases for the behavior of a, sinusoidal type (i) ACF can be

explained in terms of the location of the edge vector @ relative to the

positive and nega,tive cones. The ACF is alwa,ys less than or equal to zero

when @ lies inside or on the surface of the negative cone. When d' lies on

the surface of the negative cone, there is one point in a period of _t where

the value of the ACF equals zero. For this and only this value of wt, the

edge vector d' lies in P=. If d' lies inside or on the surface of the positive

cone, the value of the ACF is always greater than or equal to zero. Again,

there is one point in a rotation period when the ACF is equal to zero if d'

lles on the surface of the positive cone. At this point, d' lies in the plane

P=. Finally, the ACF will take on both positive and negative values in a

single period of wt if @ lles outside of both the positive and negative cones.

The actual values of _t at the two points in the period where @ lies in

P= depend on the initial location of P" as represented by u=(0). These

three cases are illustrated in Figure 3.4. This figure shows the relationship

of d' to the positive and negative cones formed by P= and a, plot of the

corresponding sinusoids representing gl (t) aS a" function of time.

Using the notation of section 3.1.4, the ratio ligl/Gll for the type (i)
ACF determines whether or not @ lies inside either of the cones. It is a

comparison of the angle made by the lines on the surface of the positive

and negative cones with the rotation axis _ and the angle that d' makes

with the rotation axis. If Ilgl/Gll > l, the half-angle of the cones is larger

than the angle of d'. Therefore, @ lles inside one of the cones and the value

of gi(t) has constant sign for all values of _t. The sign of 91 in this case
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Figure 3.4: A graphical interpretation of sinusoidal type (i) ACFs
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determineswhich of the two conescontains d'. If Ilgt/Gl[ < 1, the angle of

eb is greater than the half-angle of the cones and so eb must lie outside both

the cones. The value of gi(t) then changes sign as wt proceeds through a

cycle. The initial location of tf on its cone, and hence the initial location

of pa, is reflected by the value of the phase angle Ca" This determines the

two values of wt where gi(t) equals zero.

3.2.2 The Type (ii) ACFs

A type (ii) ACF is the inner product of an edge vector of .A and a face

normal vector for B

The location of the rotating edge vector e_(t) relative to the fixed plane

pb that passes through the origin and has normal vector u b determines the

value of gii(t), pb is parallel to the plane that contains the face of/3 in

question.

As A rotates about t_ with constant speed w, e_(t) sweeps out a cone

with axis either + tk, or -u_ depending on the sign of the constant compo-

nent _. There are three possibilities for the location of this "cone relative

to the plane pb. First, the cone can lie entirely in the closed negative half-

space of pb. If this is the case, then the edge vector e_(t) is either in pb

itself or in its open negative half-space for all values of t so that the value of

gii(t) is always less than or equal to zero. If the cone swept out by @(t) lies

entirely in the open negative half-space of pb, then the value of the ACF

is strictly negative, ff the cone is tangent to pb, the value of the ACF is

zero at the one point in a period of rotation when e_(t) lles along the line

where the cone and pb are tangent. The value of the ACF is negative at

all other points in the period.

Second, the cone formed by the edge vector of ,4 can lle entirely in the

closed positive half-space of pb. The value of gii(t) is then always greater

than or equal to zero because the edge vector e_(t) is either in pb itself

or in its open positive haft-space for all values of t. The value of gii(t) is

strictly positive when the cone swept out by e_(t) lies entirely in the open

positive half-space of pb. ff the cone is tangent to pb, the value of gii(t) is

zero at the one point in a period of rotation when ea(t) lies along the line

where the cone and pb are tangent. The value of gii(t) is positive at all

other points in the period.
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The third possibilityis that pb cuts through the cone swept out by

e_(t),pb then divides the cone into two pieces,one that liesin itspositive

ha_-space and the other that llesin itsnegative ha_-space. The value of

the ACE gii(t)is positive when e_(t)lieson the part of the cone that is

contained in the positive ha_-space of pb. The value of gii(t)is negative

when e_(t)lieson the part of itscone that iscontained in the negative ha_-

space of pb. For the two points on the cone where e_(t)liesin pb itself,the

value of gii(t)is zero. The exact values of cat at these two points depend

on the initiallocation of the edge vector of `4 on itscone, as determined by

e(0).

Figure 3.5 shows the three cases discussed above for a sinusoidai type

(ii) ACE. The figure depicts the relationship of the cone formed by e= to

the plane pS and a plot of the corresponding sinusoid expressing gii(t) as a
function of time.

In the case of a type (ii) ACE, the ratio Itgl/GI1 defined in section 3.1.4

determines whether or not the cone formed by e" lies entirely in one of the

half-spaces of pb. This ratio is a comparison of the half-angle of the cone

swept out by e_ and the angle between plane pb and the rotation axis.

If I[gl/GN > 1, the angle of pb is greater than the half-angle of the cone.

This means that pb does not intersect the cone and hence the cone must

lie entirely in one of the half-spaces of pb. The value of gii(t) therefore has

the same sign for all values of cat. The sign of gl determines whether the

cone is contained in the positive or negative half-space of pb.

If Ilgl/G]l < 1, the half-angle of the cone is greater than the angle of

pb so that pb intersects the cone. Consequently, the value of gii(t) changes

sign in a cycle of cat. The initial location of e" on the cone is reflected by

the value of the phase angle eg. The phase angle determines the two values

of cat where gii ( t ) = O.

3.2.3 Constant Type (i) and (ii) ACFs

The preceding sections have presented a geometric interpretation for sinu-

soidal type (i) and (ii) ACEs. The other possibility for the form of an ACE

is a constant. This section will briefly discuss the geometric interpretation

of constant type (i) and (ii) ACEs.

Recall from section 3.1.4 that there are three conditions under which

an ACE can be constant. The first two scenarios are that ,4 is not rotating
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Figure 3.5: A graphical interpretation of sinusoidal type (ii) ACFs
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relative to/3 or that the vector representing the edge or face normal of .A.

lies along the rotation axis. In either of these cases, the vector representing

the feature of A is fixed. If u"(t) = u_(0), the plane P_ is fixed. The

resulting constant value of 9 i determines which half-space of P_ contains

d'. If 9 i > 0, then eb lies in the open positivehalf-space of P_. ff gl < 0,

then d' lies in the open negative half-space of P_. When eb lies in P_

itseff, gi = 0. If e_(t) = e_(0), then ea is fixed and the type (ii) ACF 9 i_

is constant. The edge vector e_ lies in the open positive half-space of pb

when 9 il > 0 and in the open negative half-space of pS when 9 il < 0. When

gli = 0, e_ lies in pb.

The third way in which an ACF can be constant is if the edge or face

normal vector of B lies along the rotation axis. If eb = ±k u_ where k is

a positive constant, then es is perpendicular to u_ and u_. It is these two

components of u_(t) that cause the type (i) ACF 9 i to vary as a function

of time. Since these two components no longer contribute to the value of

the ACF, Oi is constant. Similarly, if ub = + u_, then ub is perpendicular

to _ and 4" Only the constant component of e_(t), _, can contribute to

the value of the type (ii) ACF 9 il. Therefore, gll is constant.

The constant value of gi when eb = +ku_ indicates that the relationship

of eb to plane P" remains the same as 3, rotates. Assume that u" has a

nonzero component along u_, _ _= 0. Because the rotation axis is the

axis of the cone formed by u_(t) and is also the axis of the positive and

negative cones formed by P_', the angles between d' and u_ and between

eb and/_ remain the same as A rotates. The edge vector eb then always

lles in either the positive or negative cone formed by P". If d' lies on the

axis of the positive cone, then eb points in the same direction as _ and

9 i > 0. If eb lies on the axis of the negative cone, then d' points opposite

to _ and 9 i < 0. Now suppose that _ = 0. Then the face normal vector

u_(t) is perpendicular to u_ so the plane P" contains the rotation axis. In

this case, P" also contains eb and therefore 9 i = 0.

There is also a fixed relationship between pb and e_(t) for constant

type (ii) ACFs when u b = -4-u_. In this case, the plane pb is perpendicular

to the rotation axis and therefore is perpendicular to the axis of the cone

formed by ca(t). As A rotates, e_ maintains a constant angle with u b and

with pb. If _ _= 0, then the cone formed by e_(t) lies entirely in one of the

open half-spaces of pb depending upon the direction of _ relative to u b.

When _ points in the same direction as u _, the cone lies in the positive
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half-space and gil > O. When _ points opposite to _, then the cone lies

in the negative haLf-space and gll < O. If _ - O, then ¢(t) rotates around

a circle in a plane which is perpendicular to the rotation axis. In this case,

this plane coincides with pb. The value of gii is therefore zero because e"

always lies in plane pb.

3.3 The Applicability and Orientation Time-

lines of a C-function

The applicability of a C-function can be tested by examining the signs of

each of its ACFs. Since the ACFs are periodic functions of cat for constant

angular velocity, if the trajectory of .A ever passes through the applicability

region of a C-function, it will do so repeatedly for each cycle of wt. Thus,

it is only necessary to examine the various ACFs over a single cycle of wt.

The ACF Timellnes The behavior of a single ACF can be represented

by a timeline indicating the values of wt in the interval (0, 2_') where the

ACF changes sign. Because of the sinusoidal nature of an ACF, its sign

changes will alternate. That is, a change in sign from positive to negative

will be followed by a change in sign from negative to positive and vice

versa. As a notational convenience, a "-4-" or "_=" in front of a value of wt

• where an ACF changes sign will be used to indicate the type of the sign

change. If the value of the ACF changes from positive to negative at wt,

then the entry in its timeline will be +cat. Conversely, if the value of the

ACF changes from negative to positive at wt, then the entry in its timeline

will be _wt.

The various possibilities for the time behavior of an ACF were pre-

sented in section 3.1.4. Each of these possibilities has a different timeline

associated with it. There are no points where the value of a constant ACF

changes sign. By convention, let the timeline for a constant ACF contain

the single value cat = -+-2_" when its value is positive and the single value

cat = -2_r when its value is negative. For the special case where the ACF

is always zero, let the timeline contain only the value wt -- 0.

The timeline representing a sinusoidal ACF depends on the relative

magnitudes of gl and G. When [[gl/G[] > 1, the vertical shift is so great

that the value of the ACF can never pass through zero and the sign of the
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ACF is fixed for all values of wt. The timeline for an ACF with this behavior

will be identical to that of a constant ACF. It contains only one value which

is wt = +2_" when gl > G > 0 and wt = -27r when gl < -G < 0. When

Ilgl/GII < 1, the vertical shift is small enough so that the cosine curve can

cross the zero axis and the ACF changes sign at the two points wt ÷¢g = ctl

and wt+¢g = a2 in a cycle ofwt+¢g. Each such ACF for one C-function will

typically have a different phase angle ¢g. To facilitate the comparison of all

of these ACFs, the points where each ACF changes sign will be determined

as values of cot, not cot ÷ Cg. The number and location of these transition

points depend on the values of Cg, ctl, and a2.

The four cases for which g(t) changes sign twice in a single cycle of wt

are illustrated in Figure 3.6. There is only one transition point in a cycle of

wt when Cg is equal to al or a2. These two cases are shown in Figure 3.7.

The tihaelines corresponding to each of these cases for a sinusoidal ACF are

listed in these two figures.

The Applicability Timeline for a C-function The timeline which

results from merging the timelines for the individual ACFs according to

the applicability criteria for the given C-function is called the applicability

timeline for this C-function. It contains the intervals in a single cycle of wt

where the trajectory of .A lles in the applicability region for the C-function.

These intervals are called the applicability intervals for the C-function over

the given trajectory of .A. Note that since the applicability intervals are

defined as intervals of wt, they are independent of the angular speed w. In

other words, the applicability intervals for the C-functions will be identical

for two trajectories of .A having the same rotation axis tlo but different

angular speeds w about this axis.

The applicability timeline for a C-function is similar to the timelines

that represent its ACFs. The entries in the applicability timeline are values

of wt E (0,2_') that bound the applicability intervals. However, for an

applicability timeline the convention shall be that a "-4-" in front of a value

of wt indicates that an applicability interval ends at cot. A "_" in front of

a value of cot will indicate that an applicability interval begins at cot.

Let the ith entry in the applicability timeline be denoted wtl and let

rt be the total number of entries in the timeline. First, suppose that n

is even. ff {:kcotl,_wt_,...,_=cot,,} is the applicability timeline for the C-

function, then its applicability intervals are [0, cot _], [wt 2,cot s],. • •, [wt_, 2_'].
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eg = 0 , g3 = 0 , g2 > 0 - The timeline is {-4-al, :t:ct2}
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otx < ¢_ < a_- The timeline is {_(a2- ¢_), +(2_" + ctl- eg)}

a2 < eg < 2_" - The timeline is {+(2_" + al - eg), _(27r + ct2 - eg)}

Figure 3.6: The cases where a sinusoidal ACF has two sign changes
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Cg--a2- The timeline is {-+-(2_" ÷al-a_)}

Figure 3.7: The cases where a sinusoidal ACF has one sign change

89



Conversely,if the applicability timeline is {_:wt 1, +cat 2,..., -4-wt,_} for n an

even integer, the applicability intervals of the C-function are [wtl,wt2],...,

[cat._l, wt.]. Now, suppose rt is an odd integer. In this case, if {+cat1, _:cat2,

..., +cat,_} is the applicability timeline for the C-function, then its applica-

bility intervals are [o,catl],[cat ,cat3l,...,[ t=_l;cat,]. On the other hand, if

{_:wtl, q-wt _,..., _:cat=} is the applicability timeline for the C-function and

rt is odd, its applicability intervals are [cat 1, wt2],..., [cat,,, 2_'].

By convention, an applicability timeline consisting only of the value

cat = -2z" will indicate a C-function that is never applicable for the given

trajectory of A. In other words, the trajectory of the configuration of

A does not pass through the region of C,_,(A) where the C-function is

applicable. Also, an applicability timeline consisting only of the value cat =

+2_" will indicate a C-function that is always applicable along the trajectory

of .A. In this case, the trajectory of the configuration of A never leaves the

region of Ca_, (.,4) where the C-function is applicable.

The Orientation Timeline for a C-function The orientation of a C-

function at each configuration in Ca_, (.4) where it is applicable must be

known in order to find its allowable zeros. Fortunately, this information

is available as a result of the applicability tests for the C-function. The

behavior of the ACFs is such that the orientation of the C-function is the

same for all points in one of its applicability intervals. Instead of using

additional notation to indicate the orientation in the applicability timeline

for the C-function, an auxiliary timeline will be introduced, called the ori-

entation tirneline. This new timeline gives the orientation of the C-function

in each of its applicability intervals.

The orientation timeline for a C-function that is applicable for at least

one interval in a cycle of cat is a sequence of +l's and -l's. There will be

one entry in the timeline for each applicability interval of the C-function.

An entry of +1 indicates that the corresponding applicability interval is an

interval where the C-function has positive orientation while an entry of- 1

indicates that the applicability interval is an interval where the C-function

has negative orientation.

To iUustrate the relationship of the applicability and orientation time-

lines, suppose that the applicability timeline for some C-function is {+cat.x,

;cat ,, +cat s} . From the convention for the use of "+" and '%:", the two

applicability intervals of the C-function are [0, cat 1], and [cat _,cat s]. Suppose
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also that the C-function has positive orientation in its First applicability

interval, [0,carl], and negative orientation in its second applicability inter-

val, [cat2,cats]. Then, the orientation timeline for tMs C-function will be

(+1,-1}.
For the special case where the C-function is never applicable, its appli-

cability timeline is (-2_'}. The corresponding orientation timeline is taken

to be (0}.

3.3.1 The Applicability Tests

The criteria for merging the ACF timelines to obtain the applicability and

orientation timeUnes depend on the type of the C-function. This merging

process is best explained by means of examples for each of the three types

of C-functions. The next three sections will give detailed examples for one

type (a), one type (b), and one type (c) C-function defined by using two

rectangular boxes for .A and 8. These two boxes are shown in Figure 3.8

with their vertices, edges, and faces numbered.

Recall that applicability of a G-function depends only on the orientation

of A. Also, as mentioned in the preceding section, the applicability intervals

are computed as intervals of cat and are independent of the angular speed

ca. Therefore, only the initial orientation of A, represented by O_, and the

rotation axis u_ need be specified to find the applicability and orientation

timelines for the C-functions. The axis of rotation chosen for these examples
is

u_ = unit[-1 -5 +7 ]r

= [-0.11547005 -0.57735027 -+-0.80829038 ]T

This axis points out of face 4 of .A as pictured in Figure 3.8. The ini-

tial orientation of A is such that its body coordinate axes are parallel to

the corresponding reference coordinate axes. For this orientation, the yaw,

pitch, and roll angles are all equal to zero and the quaternion 0.0 is simply

the identity quaternion, Q_ = [ 1 o r ]r. The initial alignment of the ref-

erence and bo.dy coordinate axes means that any vector v_(0) representing

a feature of .A at its initial orientation is the same as that vector expressed

in the body coordinates of.A, _. In other words, v_(0) = Q,_Q -1 __ v".

For convenience, the values of cat in the examples will be given in degrees
instead of radians. The entries in the timelines will therefore be values of

cat between 0 and 360 °.
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Figures are included for each of the three examples based on the graph-

ical interpretation of the ACFs given in section 3.2. These figures and the

paragraphs discussing them can be ignored if section 3.2 has not been read.

3.3.1.1 A Type (a) Example

The type (a) C-function chosen to illustrate the process of finding the ap-

plicability timeline is the function f_l defined by face 6 of ,4 and vertex 1

of/3. There are three edges of/3 which meet at vertex 1, namely edges 1,

4, and 9. The three type (i) ACFs for f_l corresponding to these edges of
B are

g'_(t) - 4, u_(t)
g'_(t) = _, u_(t)

where

= [0 0 -96 ]_
4 = [+32 0 0 ]_

-- [0 -24 0] T

are the vectors along edges 1,4, and 9 with tailvertex at vertex 1 of _ and

u_-- u_(0)=[0 0 -1 ]T

is the unit, outward-pointing normal vector to face 6 of .A. In order to

express these three ACFs as functions of time, the expression for u_ as a

function of time must be found. From section 3.1,

u_(t) = u_ + u_2 cos@t ) + u_3 sin(wt )

where

u_ = (,g(o),u_> u_ = [+0.0_ +0._ -0.6_ ]r
u_ = ,g(o)- _ = [-0.0_ -0._ -0.3_ ]r
u_a = u_x u_(O) ----[+0.57735027-0.11547005o ]2

The three constant coefficients of the ACFs as functions of time are

found by substituting the expression for u_(t) into the definitions of the

three ACFs. These coefficients are listed in Table 3.2. Since one of g2

or ga is nonzero for each ACF, all three of them are sinusoidal. They
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g(t/ = gl +g2cos(wt) +g3sin(_t /

IAOFhkl
gi(t) 1

g_(t) 9

+33.2800i4+62.719986 0

+2.9866660 -2.9866660 +18.475209

-11.199998 +11.199998 +2.7712812

Table 3.2: The constant coefficients of the three ACFs for f_l

g(t) = gl + c cos@t+ ¢_)
ACF] G eg(°) Ilgz/Cll al(°) a=(°)

g_(t) +33.280014 0 +1.8846142 - -

g_(t) +18.715061 260.81712 +0.15958623 99.182880 260.81712

g{s(_) +11.537762 346.10211 +0.97072535 13.897886 346.10211

Table 3.3: G, eg, Ngl/Cll, al, and a_. for the three ACFs for f_l

can each be written as the sum of a constant term and a single coslne

term. The amplitude, G, and the phase angle, eg, of the cosine term

for each ACF are shown in Table 3.3. This table also shows the ratio

Ilgl/cll and the values of _t + eg, az and a=, where the ACF equals zero.

For the first ACF, IIg_/gll > 1 and gl > 0. This means that g_(t) is

always positive and its timeline is {+360°}. For the second and third ACFs,

Ilg_/GII < 1 and eg = a2. Both g_(t) and g_(t) have one sign change from

positive to negative at wt = 360 ° + ctl - a2. The timeline for g_(t) is

{-4-(360 ° + 99.182880 ° - 260.81712 ° )} = {+198.36576 ° }. The timehne for

g'_(t)is {+(360° + 13.897886° - 346.10211°)} = {+27.797776°}.
The applicability criterion for a type (a) C-function states that the func-

tion is applicable when all of its ACFs axe nonnegative. The applicability

intervals of a type (a) C-function are those intervals in a period of wt where

all of its type (i) ACFs axe greater than or equal to zero. From the time-

lines for the three ACFs of the example, the first ACF g_(t) is nonnegative
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for the entire period. The secondACF g_(t) is nonnegative in the inter-

val [0 o, 198.36576 ° ] and the third ACF g_(t) is nonnegative in the interval

[0°, 27.795776 ° ]. Clearly, all three ACFs are simultaneously nonnegative

only in the interval [0°, 27.795776 ° ]. Thus f_l has a single applicability

interval for the given rotational motion of A. Its applicability timeline is

{+27.795776 ° ].. By definition, all type (a) C-functions have positive ori-

entation whenever they are applicable. Therefore, the orientation timeline

for f_l is {+1}. Plots of g_(t) , g_(t) , and g_(t) for one period of _t are

shown in Figure 3.9; the applicability interval of f_l is the region shaded
with plus signs to indicate the positive orientation.

Let P_ be the rotating plane that passes through the origin and remains

parallel to the plane containing face 6 of A. Figure 3.10 shows the locations

of the three edge vectors of B, _, 4, and _, relative to the positive and

negative cones formed by Pg as A rotates. As expected from the behavior

of g_(t), _ lies inside the positive cone. The other two edge vectors, _ and

_, both lie outside of either cone. Thus, there are some values of wt where

each ACF g_(t) and g_(t) will be positive. However, this is not sufficient to

guarantee that f_l will be applicable for some interval _t. The locations of

the three edge vectors must be such that all of them can simultaneously lie

in the positive haLf-space of P_ for some interval of _,,t. This will depend

on the exact configuration of the three edge vectors, as indicated by the

different phase angles for the three ACFs. In this particular case, the

configuration of the three vectors _, 4, and _ allows them all to lie in the

positive half-space of P_ for the 'interval _t E [0°, 27.795776 ° ].

3.3.1.2 A Type (b) Example

As an example of a type (b) C-function, consider the function f_z defined

by vertex 2 of .,4 and face 3 of B. The three edges of A which meet at

vertex 2 are edges 1, 2, and 10. The vectors along edges 1, 2, and 10 with

tall vertex at vertex 2 of A expressed in the body coordinates of A are

= [0 0 +24] T

= [+s o o] r
do = [0 -6 0 ]r

The unit, outward-pointing normal vector to face 3 of B is

+1 o] •
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Figure 3.9: The three type (i) ACFs for f_,l
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The ACF corresponding to edge 1 of/_ is always positive since _ lies in the

positive cone formed by Pff. Edge vectors _ and _ lle outside of both the

positive and negative cones formed by Pff. The two corresponding ACFs,

g'_(t) and g'_(t), both change sign in - cycle of _,t.

Figure 3.10: A graphical interpretation of the type (i) ACFs for f_l
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¢(t) = _,_+ ¢,_cos(,,,t)+ _sin(,,,t)

1 [-2.24 -11.2 +15.68 ]r

2 +0.106 +0.53 -0.746 ]r

10 [--0.4 --2.0 +2.8 ]T

_[_J_L_m¢,,= ¢(o)-¢i
[+2.24 +11.2 +8.32 ]T

[+7.893 -0.53 +0.746 ]T

[ +0.4 -4.0 -2.8 IT

[-7--] _ = u_ × ¢(o)
! 1 [ -13.856406 +2.7712812 0 ]r

2 [0 +6.46 +4.618 ]T

10 [ +4.8497423 0 +0.69282030 IT

Table 3.4: The three component vectors of _(t), _(t), and d0(t)

The three type (ii) ACFs for f_a axe

g_(t) =
gq(t) =
g_(t) =

_(_),

In this case, the three edge vectors of A must each be found as functions

of time. Table 3.4 shows the three component vectors for edges 1, 2, and

10 of A as functions of time for the given value of u_.

The three constant coefficients for each of the type (ii) ACFs of f_3

as functions of time axe listed in Table 3.5. These coefficients were com-

puted using the components of the appropriate edge vector of A from Ta-

ble 3.4. All three ACFs axe sinusoidal because at least one of g2 and g3

is nonzero for each ACF. The values of G, Cg, Hgl/GII, al, and a2 which

result from combining the sine and cosine terms axe given in Table 3.6.
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g(t) = gl + g2 cos(_t) + g3 sin(wt)

k

g?(t) 1
(t)2

g (t) 1o

-II.2 +11.2 +2.7712812

+0.52 -o.52 +6.4_

-2.0 -4.0 0

Table 3.5: The constant coefficients of the three ACFs for f_3

g(t) = gl + G cos(wt +Ca)

ACF G Cg(o) Ilgl/GII '_1(°) _2(°)

g_(t) +11.537764 346.10211 +0.97072535

g_(t) +6.4886225 265.28525 +0.082195155

g_(t) +4.0 180 +0.5

13.897886 346.10211

94.714755 265.28525

60 300

Table 3.6: G, Cg, Ilgl/GIl, _1, and a2 for the three ACFs for f_

Because IIg_/Vll < 1 for all three ACFs, g_(t), g_(t), and g_(t) take on

both positive and negative values in a single cycle of wt. For the first

two ACFs, Ca = a2 and the single sign change is from positive to nega-

tive at wt = 360 ° + al - a2. The timeline corresponding to g_i(t) is then

{4-(360 ° + 13.897886 ° - 346.10211 ° )} = {+27.795776 ° }. The timeline corre-

sponding to g_(t) is {+(360 ° +94.714755 ° - 265.285250 )} = {5=189.42951 ° }.

For the third ACF, al < Cg < a2. There are two sign changes for g_(t). The

first sign change is from negative to positive at wt = a2-¢g = 120 ° and the

second sign change is from positive to negative at wt = 360 ° +al-¢g = 240 ° •

The timeline representing g_(t) is then {_=120°,5=240°}.

A type (b) C-function is applicable when all of its ACFs are non.negative.

The applicability intervals of a type (b) C-function are those intervals in

a period of wt where all of its type (ii) ACFs are greater than or equal to

zero. From the timelines for the three ACFs of f[3 in the example, the

first ACF g_'(t) is normegative in the interval [0°, 27.795776 ° ]. The second
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ACF 9_i(t) is nonnegative in the interval [0°, 189.42051 ° ]. Finally, the third

ACF 9_(t) is nonnegative in the interval [120 °, 240°]. These three intervals

do not overlap. Therefore, there are no intervals in a cycle of _t where all

three ACFs are nonnegative. This means that f_ is never applicable for

the given rotational motion of A. In this case, the applicability timeline for

f_ is {-360 ° } and the orientation timeline is {0}. Plots of 9_i(t), g_(t),

and 9_(t) are shown in Figure 3.11. These plots confirm that there are no

values of _t where all three sinusoidal ACFs are greater than or equal to

zero.

Let Pss be the fixed plane that passes through the origin and is parallel

to the plane containing face 3 of B. The relationship of the three cones

formed by edge vectors _, _, and d0 as .A rotates to P_ is illustrated in

Figure 3.12. In this case, P3s cuts through all three of the cones formed

by the three edge vectors. This agrees with the fact that all three ACFs

change sign in a cycle of _t. There is some part of each cone in the positive

half-space of P_, but this does not guarantee that f_a will be applicable for

some interval of a rotation cycle. In fact, f_ is never applicable for the

given rotation axis. This is because the configuration of the edges is not

such that all three of them can simultaneously lie in the positive half-space

of PI. Two of the edges will always lie on those parts of their respective

cones which are in different half-spaces of P_. The influence of the relative

configuration of the three edge vectors on the applicability of f_a is seen in

the three phase angles of the ACFs. These phase angles are such that the

intervals where the individual ACFs are positive do not overlap.

3.3.1.3 A Type (e) Example

The final example of finding the applicability and orientation timelines will

be the type (c) C-function f_2 defined by edge 8 of .A and edge 2 of B. Let

the tail vertex of edge 8 of .A be vertex 8. Then the vector along edge 8

pointing away from vertex 8 expressed in the body coordinates of .A is

g=[-8 0 o]

The tail vertex of edge 2 of B is chosen to be vertex 2. The edge vector

pointing along edge 2 away from vertex 2 is

= [+32 0 0 ]T
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Figure 3.11: The three type (ii) ACFs for/_a
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ROTATION AX IS

All three ACFs change sign in a cycle of cat because Pab intersects the cones

formed by _, _, and d0.

Figure 3.12: A graphical interpretation of the ACFs for f_a
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There are four ACFs for this type (c) C-function, two type (i) ACFs

and two type (ii) ACFs. The two type (i) ACFs involve edge 2 of B and

faces 4 and 5 of.A which meet at edge 8 of .4. The unit, outward-pointing

normal vectors for these two faces expressed in the body coordinates of .A

are

4=[0 -1 0]randu_=[0 0 +1 ]T

The two type (i) ACFs are

g'_(t)= /4,±¢,(t)/g'_(t) = 4,Tub(t))

The choice of signs for _ and t_ in the above equations depends on the

cross product of _s and another edge vector of A which bounds face 4 or

5 of A and has the same tail vertex as _. Edge 7 is the edge of A which

bounds face 4 and has vertex 8 as one of its endpoints. The vector along

edge 7 of A with tail vertex at vertex 8 is

4=[0 0 -24] r

The cross product of _ and _s is

4× _s=[ 0 192 0 ]T=--192_

This means that

and also that

The choice of sign for u_ in g_ can be verified as follows. Edge 11 of A

bounds face 5 and has vertex 8 as one of its endpoints. The vector pointing

along edge 11 away from vertex 8 is

_1 = [0 +6 0 ]r

The cross product of _1 and _s is

_1 × _s=[ 0 0 +48 ]T =+48

This confirms the choice of the plus sign in g_.
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The two type (ii) ACFs for f_2 involve edge 8 of .2, and faces 3 and 6 of

/3 which meet at edge 2 of B. The unit, outward-pointing normal vectors

for these two faces of B are

_=[ 0 +1 0 ]Tandd_=[0 0 -1 ]T

The definitions of the two type (ii) ACFs are

= /gV(t) =

The signs for _ and t_ in the above equations are chosen by comparing

the cross product of _ and another edge vector of B with the appropriate

face normal t_ or t_. The other edge vector of/3 used in the cross product

must bound face 3 or 6 of B and have the same tail vertex as _. Edge 1 is

the edge of B which bounds face 3 and has vertex 2 as one of its endpoints.

The vector along edge 1 of/3 with tail vertex at vertex 2 is

4=[0 0 +96 ]r

The cross product of _ and 4 is

× 4 = [ 0 -3072 0 = -3072 u_

Consequently,

and

The choice of sign for t_ in g_i can be verified in a similar manner. Edge

10 of B bounds face 6 and has vertex 2 as one of its endpoints. The vector

pointing along edge 10 away from vertex 2 is

40=[ 0 -24 0 ]T

The cross product of _ and 40 is

× 40=[ 0 0 -768 ]T =+768t_

which confirms the choice of the plus sign in iig2"
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[+0.0_ +0.] -0.4_ ]r[-0.09_ -0.4_ +0.65_ ]r

m ,¢,_= ±¢(o) - u_

[-0.0_ +0._ +0.4_ ]r[+0.093 +0.46 +0.346 ]r

_a = _ x +.¢(o)
--U_4I [--0.80829038 0 --0.11547005 IT

+t_ I [--0.57735027 30.11547005 0 IT

Table 3.7: The components of the face normal vectors -_(t) and u_(t)

g(t) = g_ + g2cosiwt) +gasin(wt

_°_t_I_--<__> _'=<_'¢'>_=<_'_>
gig(t) 4 +2.1-3 -2.13 -25.865292

gi2(t) 5 -2.986 +2.986 -18.475209

Table 3.8: The constant coefficients of the type (i) ACFs for f_2
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ACF I
9 (t) +25.953120
¢,(0 +18.715061

g(t) = gl + G cos 'wt + _g

a @,(°) IIgUGII _1(°) _,(°)

94.715004 +0.082199494 94.715004 265.28500

80.817118 +0.15958626 80.817118 279.18288

Table 3.9: G, Cg, [tgl/Gll, _1, and for the type (i) ACFs for f$2

The time behavior of the four ACFs must now be determined. The type

(i) ACFs will be considered first. The three constant vectors which appear

in the equations for -tf4(t ) and u_(t) are shown in Table 3.7. Using these

component vectors to compute the constant coefficients of the two type (i)

ACFs as functions of time gives the values listed in Table 3.8. Both g_(t)

and gi2(t ) are sinusoidal and can be rewritten by combining the sine and

cosine terms. The resulting magnitude, G, and phase angle, q_g, as well

as the ratio ii91/Gii and the angles al and 32 for g_ and g_ are given in

Table 3.9. The single sign change for both of these ACFs is from negative

to positive and occurs at wt = 32- 31 since q_g = 31. The timeline for

gil(t) is {_:(265.28.500 ° - 94.715004°.)} = {_170.57000 ° } while the timeline

forg;(0 is { :(279.18288° - 80.817118")} = { :198.36576°}.
One of the criteria for applicability of a type (c) C-function is that

the two type (i) ACFs be either both nonnegative or both nonpositive.

The timeline for gil(t ) implies that it is nonnegative only in the interval

[170.57000 , 360°]. Similarly from the timeline of g_(t), the interval where it

is nonnegative is [198.36576 ° ,360°]. The interval [198.36576 ° ,360 °] where

these two intervals overlap is the interval where both of the type (i) ACFs

for f$_ are greater than or equal to zero. Conversely, gi(l) is nonpositive

in the interval [0°,170.57000 ° ] while g_(t) is nonpositive in the interval

[0 °, 198.36576 ° ]. The interval where both of these ACFs are nonpositive is

[0 °, 170.5700 ° ]. In the interval (170.57000 ° , 198.36576 ° ), the values of the

two ACFs have opposite Signs.

Now the behavior of the type (ii) ACFs for f[2 will be examined. The

equation expressing the edge vector of .4, @s, appearing in the definition of

these two ACFs as a function of time is

_s(t) = _ + _, cos(wt) + _3 sin(_t)

106



g(t) = gl + g2 cos(_t + gs sin(a_t)

+0.53 --0.53 +6.4663230

-0.746 +0.746 +4.6188022

Table 3.10: The constant coefficients of the type (ii) ACFs for f_2

g(t) =g_+ Ccos(_t + ¢_)
I ACFI G Cg(°) Ilgz/GI[

g_i(t) +6.4882800 265.28500

g_i(t) +4.6787653 279.18288

_1(°) _(°)
+0.082199494 94.715004 265.28500

+0.15958626 80.817118 279.18288

Table 3.11: G, Cg, Ilgl/G[I, _, and a2 for the type (ii) ACFs for f_2

where

cS_ = (_s(0),u_) = [--0.106 -0.53 +0.746 ]T

_2 = 4(0)- _i = [ -7.89_ +0.5_ -0.7_ ]r
_s = ub x 4(0) = [ 0 -6.4663230 -4.6188022 IT

Substituting the equation for _s(t) into the definitions of the two type (ii)

ACFs gives the constant coefficients shown in Table 3.10. Each type (ii)

ACF is sinusoidal, so the sine and cosine terms can be combined into a single

cosine term. The values of G, _g, [[gl/G][, az, and ct2 for g'_(t) and g_(t) are

listed in Table 3.11. For both of these ACFs, Cg = ct2 and the single sign

change is from positive to negative at wt = 360 ° + ctl - a2. The timeline

representing g_ ( t ) is {-4- (360 ° + 94.715004 ° - 265.28500 ° )} = { -4-189.43000 ° }.

The timeline representing g_i(t) is {-4-(360 ° + 80.817118 ° - 279.18288 ° )} =

{-t-161.63424 ° }.

Another criterion for applicability of a type (c) C-function is that the

two type (ii) ACFs be either both nonnegative or both nonpositive. The

timeline for g_(t) shows that it is nonnegative in the interval [0°, 189.43000 ° ].

Similarly, the timeline representing g_i(t) shows that it is nonnegative for
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[0 °,161.63424 °]. Thus, both type (ii) ACFs for f_2 are greater than or

equal to zero in the interval [0 °, 161.63424 ° ]. Conversely, g_i(t) is nonposi-

tive in the interval [189.4300 ° , 360 ° ] while g_ (t) is nonpositive in the interval

[161.63424 ° , 360°]. The interval where both of these ACFs are nonpositive

is [189.43000 °,360°]. The values of the two type (ii) ACFs have opposite

signs in the interval (161.63424 ° , 189.43000 ° ).

The final criterion for applicability of a type (c) C-function states that

both type (i) ACFs must be nonpositive if both type (ii) ACFs are non-

negative and vice versa. These two cases are distinguished by differing ori-

entations.for the type (c) C-function. From the above analysis, the interval

where both of the type (i) ACFs for f_2 are nonnegative is [198.36576 ° , 360 ° ].

The interval where the two type (ii) ACFs are nonpositive is [189.43000 ° ,

360°]. In the region where these two intervals overlap, [198.36576 °,360°],

f_2 is applicable and has positive orientation. The interval where both

type (i) ACFs are nonpositive is [0°, 170.57000 ° ] while the interval where

both type (ii) ACFs are nonnegative is [0 °,161.63424 ° ]. These intervals

overlap in the interval [0°, 161.63424 ° ]. In this interval, f_2 is applicable

but has negative orientation. The resulting applicability timeline for f_2 is

{5=161.63424,_198.36576} and the orientation timeline is {-1, +1}. Fig-

ures 3.13 and 3.14 show plots of the two'type (i) ACFs and the two type (ii)

ACFs for f_, respectively. In these plots, the applicability interval where

f_ has positive, orientation is shaded with plus signs and the applicability

interval where it has negative orientation is shaded with minus signs.

A geometric interpretation of the behavior of the four ACFs for f_2 is

presented in Figures 3.15 and 3.16. Let P_ and P_ be the rotating planes

that pass through the origin and remain parallel to the planes containing

faces 4 and 5 of A, respectively. Since -_ is used in the definition of g_,

the value of g_(t) is positive whenever _ is in the negative half-space of P_.

In this case, the positive cone formed by P_ as .A, rotates is taken to be the

cone which shares its axis with the cone formed by -_. The location of

relative to the positive and negative cones formed by the planes P_ and

P_ is shown in Figure 3.15. The fact that both type (i) ACFs change sign

in a cycle of wt is confirmed by the location of _ outside of either of the

cones formed by both P_ and P_.

Let P_ and P_ be the two fixed planes that pass through the origin

and are parallel to the planes containing faces 3 and 6 of B, respectively.

The locations of these planes relative to the cone formed by the rotating
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The edge vector _ lie outside of both the positive and negative cones formed

by P_ and P_. The two corresponding ACFs, g_(t) and g_(t), both change

sign in a cycle of _t.

Figure 3.15: A graphical interpretation of the two type (i) ACFs for f_2
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the cone formed by _s.

Figure 3.16: A graphical interpretation of the two type (ii) ACFs for f[2
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vector _ are shown in Figure 3.16. Both P_ and P_ intersect the cone

formed by _s. This agrees with the behavior of the type (ii) ACFs found in

the preceding analysis. Both g_(t) and g_(t) take on positive and negative

values in a single cycle of _t.

The three examples presented above have shown how to find the appli-

cability and orientation timelines for each of the three types of C-functions.

The ability to find these timelines has two important consequences for the

solution of the collision detection problem. First, the search for the allow-

able zeros of a particular C-function can be confined to its applicability

intervals, .if any, in each cycle of _t, as stored in its applicability timeline.

Any zeros in these intervals will automatically satisfy the first criterion for

allowable zeros, which is also the second collision condition. The orien-

tation of the C-function in its applicability intervals is available from its

orientation timeline and is needed to eliminate those of its zeros that do

not satisfy the second criterion for allowable zeros. Second, the test of the

third collision condition at an allowable zero of a C-function can be sim-

plified. The applicable C-functions at any value of time t are easily found

by comparing the value of _t modulo 2a" at that point to the applicability

intervals of the various C-functions. The applicability tests do not have to

be repeated for all of the C-functions every time an allowable zero is found.

The problem of locating any zeros of a C-function in its applicability in-

tervals stiU remains to be solved. This problem is addressed in the next two

chapters, Chapters 4 and 5, for the case where A is moving with constant

Linear and angular velocities relative to B.
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Chapter 4

The C-functions for Constant

and Angular Velocities

Linear

The collision detection algorithm must search for the allowable zeros of the

C-functions along the given trajectory of A. In Chapter 3, it was shown

that this .zero search can be limited to the applicability intervals of each

C-function. These applicability intervals were found by examining the form

of the ACFs for the specified rotational motion of A. For the case where

A is rotating with constant angular velocity, the values of the ACFs were

shown to depend only on the location of A in a rotation cycle as indicated

by the value of wt. The value of t measures the time elapsed since the

initial configuration where t = 0. Once the translational motion of .A is

also specified, the values of the C-functions will depend on the location of

A along its trajectory as measured by the value of t. In order to develop

an appropriate strategy for finding the allowable zeros of the C-functions

that occur in their applicability intervals, the behavior of the C-functions

as functions of t must be considered.

This chapter will discuss the form of the C-functions for the particular

case where A is moving with constant linear and angular velocity. The

first section of this chapter presents a derivation of the three types of C-

functions as functions of time and shows that they have a common form.

The special cases of translation only and rotation only are also considered.

A practical C-function zero search strategy will require finite bounds

on the parts of the trajectory of A which must be searched for zeros. This

requirement is motivated by two different considerations. First, the C-

functions are shown to be transcendental functions of t later in this chapter.

In the most general case, no analytic formula exists for finding the zeros of

such functions. A numerical procedure must be developed to iterate for in-

dividual zeros of a C-function. This numerical zero search procedure is the

subject of Chapter 5. Second, any numerical search procedure for the zeros

of a C-function will only be feasible if the search range can be bounded.

However, the applicability intervals of the C-functions as defined in Chap-

ter 3 occur cyclicly with wt along the trajectory of ,4. Therefore, a bounded
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zero search interval does not result from applicability considerations.

The second through fourth sections of this chapter develop three further

methods for bounding the intervals of t that are searched for zeros of the

C-functions. The first method, presented in section 4.2, uses the general

form of the C-functions to derive mathematical limits on the values of t

where a zero can occur. However, this approach does not always yield finite

bounds for the search intervals. For this reason, two other methods, referred

to as the dynamic spherical approximation and the physical constraints,

respectively, are developed in sections 4.3 and 4.4. These methods use only
the translational motion of A and the relative sizes of .A and B to find

bounds for the zero search intervals.

The dynamic spherical approximation and the physical constraints use

the third collision condition to limit the zero search interval. This parallels

the development in Chapter 3, which described how the second collision

condition of applicability can be used to limit the zero search. The new

constraints eliminate values of t where the third collision condition cannot

be satisfied because of the finite size of the features of .A and B. Any zeros

the C-functions may have at values of t that do not satisfy these constraints

cannot represent valid collisions of .A and B.

As will be seen in sections 4.3 and 4.4, the dynamic spherical approx-

imation and the physical constraints are approximate and, therefore, do

not exactly define the intervals where a zero will satisfy the third colli-

sion condition. Consequently, a C-function may have a zero at a value of

t that satisfies the approximate constraints but does not satisfy the third

collision condition. This contrasts with the applicability conditions, which

exactly define the applicability intervals of a C-function. These conditions

provide exact bounds on the intervals where the second collision condition

is satisfied.

The final section of this chapter gives a short discussion of how the

information from the various methods for limiting the zero search intervals

is integrated into the collision detection procedure.
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4.1 Derivation of the C-functions as Func-

tions of Time

The quaternion representing the orientation of.A as a function of time for

constant angular velocity was given in chapter 3. This was used to derive

the equation for a vector representing a feature of .A as a function of time.

The equation expressing the position of .A as a function of time for constant

linear velocity is simply

where xo is the initial position of C _' at time t = 0 and v is the constant

linear velocity vector, both expressed in reference coordinates. The above

equation for x(t) along with the equation for the vector representing the

appropriate feature of A as a function of time are substituted into the

definitions of the C-functions to obtain their forms as functions of time.

Detailed derivations for each of the three types of C-functions are presented

in the next three sections.

4.1.1 The Type (a) C-functions

Recall from section 2.2.1 that the definition of the type (a) C-function f_j

modelling potential contact of face i of .A and vertex j of _ is

The second inner product can be divided into two terms so that

The vertex a_ ((_) was chosen to lie on the ith face of A. Therefore, the

third inner product measures the distance of the plane containing the ith

face of .4 from C _ along the outward-pointing normal vector to face i,

u_ (_)). This distance is a constant which is independent of the coordinate

system in which the vectors u_ and _ are expressed. Let d_ = (u_, _)
denote this constant.

The first two inner products in the equation for fi_j change as A trans-

lates and rotates. Let u_(0) = Qou_O_ -t be the face normal vector u_
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expressedin referencecoordinatesat time t = O.Then the equation for u_
as a function of time is

where

u_(t) = 4 + u_ cos@t)+ u_ sin@t)

u_ = u_(0)- 4
u_ = u_ × u_(0)

Consider the first inner product in the definition of f/_/, (u_ (0), h_). Sub-

stituting the expression for u_ as a function of time into this term gives

(u_(t), hi) = (4, hi) + ( u_, h_) cos@t) + ( u_, h_)sin@t)

The second inner product (u_ (_)), x) can be further divided into the
two terms shown below

(u_(t), x(t))= (u_(t),xo)+ (u_(t), v)t

Expanding the two inner products in the above equation using the equation

for u_ (t) yields

(u_(t), xo) = (4, x,,) + (u_, xo)cos@t) + ( u_, xo) sin@t)

and

(u_(t), v) = (4, v) + ( u_, v) cos@t) + ( _, v) sin@t)

When these expressions are substituted into the equation for the ( u_ (t), x(t)),
the result is

(u_(t),x(t)) =
{(4, x,) + (4,v)t} +

{( _, x_) + (u_, v) t} cos@t) + {( _, x_) + ( u_, v)t} sin(wt)

The final step in the derivation of f_,j(t) is to substitute the expressions

for its three terms back into its definition. After combining similar terms,

the type (a) C-function as a function of time is

/b(t) =
([( 4, _ - x_)- 4] - (4, v) t} +

{(u_, h_ - xo) - (u_,v)t} cos@t) +{(u_, hj - xo) - (u_, v) t} sin@t)
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All of the inner products appearing in this equation axe constants. The

resulting form of the type (a) C-function is similar to a shifted sinusoid.

However, the constant coefficients are replaced by the linear functions of

time shown in braces in the above equation for f_j.

4.1.2 The Type (b) C-functions

The definition of the type (b) C-function f_j modelling potential contact

between vertex i of .A and face j of 13 is

_ (__)=<_,x+_(_)>-<_, _>
When the first inner product is separated into two terms, the type (b)

C-function becomes

Because the vertex i_ was chosen to lie on the jth face of B, the third inner

product measures the distance of the plane containing the jth face of B

from the origin of reference coordinates along its outward-pointing normal

vector 4" This distance is a constant which depends only on the geometry

of B. Let _ = (_, !_) denote this constant.

(-)The time dependence of f_bj comes from the vectors x and ai O ap-

pearing in the first two inner products. Consider the first inner product,

( _, x). Substituting the expression for x(t) into this term gives

<_,.)> _-<_,_>÷<_,v>,

Let ai(0) = OaaiQo -1 be the vertex vector ai expressed in reference

coordinates at the initial time. The equation for ai as a function of time

for constant angular velocity is

_(t) = al + a2 cos@t) + aasin@t)

where

a2 = _(0)- _1
a_ = L_xa(0)
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Substituting this into the second inner product of f/b,j, ( _, a/(_))), gives

All three inner products in the definition of f_j as functions of time cart

be substituted back into the equation for f_b,j. The result of this substitution
after similar terms have been combined is

f_,j(t) =

All of the vectors appearing in the inner products of this equation are

constant. The inner products are therefore constant scalar coefficients for

f_b,_. The above equation for f_b,j shows the type (b) C-function to be the

sum of two pure sinusoidal terms and a term that is linear in time.

4.1.3 The Type (c) C-functions

The final type of C-function to be derived as a function of time is the type

(c) C-function. By definition, the type (c) C-function modelling potential

contact of edge i of A and edge j of B is

_ (_) =I<(_)×_,_+_,(_))- I<(_)×_,_,)
This C-function can be written as

;<(_)×_,x)+;<(_)×_,_,(_))- ;< (¢ ×_,_,)
where the first scalar triple product has been split into two scalar triple

products. Each of the three scalar triple products in the definition of f_
will be considered separately. The identities

<a, bx c) =<b, cx a) =<c, ax b)

will be used to find these scalar triple products as functions of time.

The vectors in the first scalar triple product, (e_ (_)) x _, x), can be

rearranged as:

(<(,_)x_,x)=(<(_,),_xx)
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The cross product _ × x as a function of time is

The two cross products in parentheses in this equation are constant vectors.

The first triple product can now be further divided into

The expression for e_ as a function of time is

¢(t) = _ + e=cos(,,,t)+ _ sin(,,,t)

where _(0) = O.oe_ 00 -1 is the edge vector expressed in reference coordi-

nates at the initial time and

= (_'(0), _) u_
= ¢(0)-
= u_ × ¢(0)

When this equation for e_(t) is substituted into the first scalar triple prod-

uct for f_.j the result is

This has the form of a shifted sinusoid with coefficients that are linear

functions of time instead of constants. This is the same general form as

that of the type (a) C-function f_j(t).

The second scalar triple product, ( e_ (_)) × _, _, (_))), can be rewrit-
ten as follows

The relative configuration of the two vectors _1 and e_ is fixed because ,4

is a rigid object. Hence, the cross product a/1 × e_ is a constant vector when

expressed in the body coordinates of ,4. For convenience in the subsequent
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derivation, let 4(_)) = (a/l x _)(_))represent this cross product as a

function of the orientation of A. Then the second inner product for f_
becomes

× =
The value of the cross product 4 = a_l x e_ can first be computed in

the body coordinates of A. The time variation of this vector can then be

treated in the same manner as a vector representing a feature of A. In other

words, its expression as a function of time can be found according to the

analysis of section 3.1.2. Let 4(0)= (a h x e_)(0)= O_(a_, x _)O_ -1 be

the cross product 4 expressed in reference coordinates at t = 0. Then 4
as a function of time is

4(t) = _ + _ cos@t)+ _ sin@t)

where

= 4(0)- e_
= u_ × 4(0) = _ x (_, x _)(0)

Substituting this equation for 4(t) into the second scalar triple product for

f_ gives

The three inner products in the above expression are all constants. Thus,

the second scalar triple product for f_,j is simply a shifted sinusoid with

constant coefficients when expressed as a function of time.

The last scalar triple product in the definition of f_, (e_ (_)) x _, 1_),
can be rearranged to obtain

× ×

The cross product _ x I_ will be denoted _. This vector is similar to the

cross product 4 = ai_ x e_ introduced in the preceding paragraph. Since B

is stationary, _ is a constant vector. The equation for e_ as a function of

time has already been found in deriving the expression for the first scalar
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triple product of f_j. The result of substituting e_(t) into the third scalar

triple product is

As was the case for the second triple product, the third triple product

is a shifted sinusoidal function of time because the inner products in the

expression above are all constants.

The final step in deriving the type (c) C-function as a function of time

is to combine the three scalar triple products as functions of time. This

yields the equation below where similar terms have been combined

=

{[(_,_ x x_)+(_,_)- (_,_)] +(_,_ x v)t} sin(wt)

The inner products in this equation are all constant. As expected from the

forms of its three triple products, the type (c) C-function as a function of

time has the same form as the type (a) C-function. This general form is

that of a shifted sinusoid having coefficients that are linear terms in time.

4.1.4 The C-functions for Translation Only

For the case where .A is translating but not rotating, _ = 0 and the vectors

representing the features of A are constant. Therefore, their values in

reference coordinates depend orgy on the initial orientation of A. Hence,

the ith face normal, edge, and vertex vectors are equal to the constant

vectors u_(O), e_(O), and _(0), respectively. The time dependence of the

C-functions in this case is due solely to the presence of x in their definitions.

When A is not rotating, the type (a) C-function f_j becomes

f_j(t) = (u_(O), _) - (_(0), x(t)) -

Similarly, the type (b) C-function f_j becomes
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and the type (c) C-function f_j becomes

Substituting for x(t) into each of these three equation gives the following

equations for f_j (t), f_j(f), and f_j(t) when _ = 0:

f_,j(t) = [<,#(0),_ - 2) - _]- <_¢(0),v) t

Therefore, aU three types of C-functions are linear in time and have no

sinusoidal terms for the case of translation only.

4.1.5 The C-functions for Rotation Only

Now consider the special case where v = 0 and A is rotating but not

translating. In this case, the position vector x is equal to the constant

initial position vector, x = X_. The face normal, edge, and vertex vectors

for A are functions of time because A is rotating. The equations for u_(t),

e_(t), and a_(t) were given in the preceding sections.

Using the equation for u_(t), the type (a) C-function f_j becomes

= (_(t), b - x_)-d?
= [<u_,b- x_)-¢]+

<_, b - x_)cos(_t)+ <u_,b - x_)sin@t)

when ,4. is not translating. In this case, the type (b) C-function f_b,j becomes

= [<_,_ + al)-_] +<_.,a2) cos(cvt)+(_,a_)sin@t)

using the equation for a_(t). Thus, the form of both the type (a) and (b)

C-functions for the case of rotation only is a shifted sinusoid with constant

coefficients.

The type (c) C-function can also be shown to have a shifted sinusoidal

form for the case where A is not translating. When v = 0, only the terms
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involving xo remain in the expression for the first scalar triple product as

a function of time. The derivation of the other two scalar triple products

as functions of time is identical to that given in section 4.1.3. Combining

the three scalar triple products as functions of time and omitting the terms

containing v gives

Therefore, all three types of C-functions have the form of a shifted

sinusoid as functions of time when A is rotating but not translating.

4.1.6 The Generalized C-function

Examining the equations for f_j(t), f_j(t), and f_.j(t), it is clear that they
share a common form as functions of time. This form wiU be referred to as

the generalized C-function f(t) where

f(t) = (rnlt + 11) + (rn2t + 12) cos(cat) + (mat +/3) sin(cat)

The six coemcients rnl, rn2, rn3, 11, l_, and 13 are scalar constants which

depend on the type of the C-function and the vectors representing the par-
ticular features of A and B which define it. The values of these coefficients

derived in sections 4.1.1, 4.1.2, and 4.1.3 for each of the three types of C-

functions for the case of combined translation and rotation of A are listed

in Table 4.1. For the type (a) and (c) C-functions, all six coefficients can

be nonzero. This results from the derivations in sections 4.1.1 and 4.1.3

which shows these two types of C-functions to be shifted sinusoids having

three coemcients that are linear in time instead of constant. However, both

rn2 and rna are zero for a type (b) C-function so that terms of the form

t cos(cat) and t sin@t) are absent from type (b) C-functions. This stems

from the analysis of section 4.1.2 which shows the type (b) C-functions to

be sums of a linear term and two pure sinusoidal terms in time.

For the special case of translation only, the four coefficients rn2, rna, 12,

and la are all zero and all three types of C-functions have the linear form
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f(t) = ml_ +11 + (m2t +12 cos(w_)+ raat +/z)sin(wt)

] Type (a) Type (b) Type (c)

Table 4.1: The six constant coefficients for the generalized C-function

mlt + I1. The values of ml and 11 found in section 4.1.4 for the different

types of C-functions when _ = 0 are shown in Table 4.2.

For the special case of rotation only, the three coefficients in1, m2, and

ms are all zero. In this case, all three types of C-functions have the shifted

sinusoidal form 11+12 cos(wt)+la sin(wt). The values of 11, 12, and lz derived

in section 4.1.5 for the different types of C-functions when v = 0 are shown
in Table 4.3.

In summary, this section has shown that all three types of C-functions

share a common form, f(t), as functions of time. This is true even for the

special cases where A is translating but not rotating and when A is rotating

but not translating. Therefore, the form of the generalized C-function f(t)

will be used for the analysis of the C-functions in the remainder of this

thesis. This is especially important in Chapter 5 where the zero search

procedure for a C-function will be shown to depend on the values of the

coefficients of f(t).
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= o =_f(t)= m_t+ tl

Type (a) Type b) l Type (c)

Table 4.2: The coefficients ml and 11 of the generalized C-function for the

case of translation only

v= 0 => f(t) =ll+12cos(wt)+lasin(wt)

Type (a) Type (b) Type (c)

_ <_,_- _>-d_ (_.,_0+_)-_ (_,_ ×_0)+(_,_)-(_,_)
_, <_,_- _> (_.,_) (_,_ ×_0)+(_,_)-(_,_)
_ <_,_- _> (_.,_) (_,_ ×,,0)+(_,_)-(_,_)

Table 4.3: The coefficients ll, 12 and la for the generalized C-function for

the case of rotation only
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4.2 Analytic Root Intervals for the Gener-

alized C-function

Recall that the applicability intervals of a C-function do not provide finite

bounds for the search for its zeros. Another way to bound the zero search

intervals is to examine the form of the generalized C-function to determine

the regions where it is possible for it to have zero value. The intervals of

time where it is mathematically possible for f(t) to be zero are called the

analytic root intervals. 1

Consider the two sinusoidal terms in the definition of f(t). They can

be combined into a single cosine term with a time-varying amplitude F(t)

and phase angle cS(t). The resulting expression for f(t)is

f(t) = (mlt + ll) + F(t)cos @t + cs(t))

where

F(t) = _/(m2t +l_)2+(m3t +13)_> 0

and

F(t)cosCs(t ) = m2t +12

-F(t) sinCs(t ) = mat +Iz

For any value of t where f is zero,

F(t) cos (_t + _(t)) = -(mlt + tl)

Taking the absolute value of each side of this equation gives

F(t)lcos@t + Cs(t))[- Ira3 +111

Since the magnitude of the cosine is always less than or equal to one, it is

only possible for f(t) to equal zero in an interval of time where

F(t) > Imlt + ll1

Thus, the phase angle _b! is eliminated by converting the original equality

to this inequality. The analytic root intervals of f(t) are defined to be the

regions where

_/(m'.t + l'.) 2 + (rest + Is)' > Ira3 + 111

1The derivation of the analytic root hatervals for f(t) presented in this section was
suggested to the author by reference [22].
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Clearly, the locations of these regions will depend on the values of the six

coefficients ml, m2, ma, 11, 12, and 13.

The inequality above can be rearranged to obtain a requirement that

the value of a polynomial in t of degree no greater than 2 be greater than

or equal to zero. Squaring both sides and subtracting the right-hand term

from both sides of this inequality gives

(m2t+ 12)'+ (m t + 13) - (mlt + 11) ___0

When the squared terms are expanded and terms of the same degree in t

are combined, the result is

For convenience, the polynomial on the left-hand side of this inequality wiU

be denoted p(t) and its three constant coefficients will be denoted pl, p2,

and P3 where

p(t) = pit 2 + 2p_t + pa

p2 = (rn212 + rnal3- mill)

The intervals of time where p(t) > 0 depend on the values of its three

coefficients pl, P2, and pa. The possible cases for the behavior of p(t) are

discussed in the following paragraphs.

pl _ 0 If p_ _ 0, then p(t) has degree 2 and represents a parabola. When

Pl > 0, the parabola curves upward. The parabola curves downward when

Pl < 0. The regions of t, if any, where p(t) >_ 0 depend on the values of Pl

and the discriminant pd where

The three possibilities pa < 0, pa = 0, and pa > 0 are discussed below.

Ifpa < 0, then the two roots ofp(t) are complex and there are no values

of t where the parabola crosses the zero axis. If in addition Pl > 0, then

p(t) is always positive and it is possible for f(t) to have zeros for all values

of t. In this case, the analytic root interval for f(t) is the entire time axis
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(-oo, +oo). On the other hand, if Pt < 0 when Pd < O, then p(t) is always

negative. If this were the case, it would not be possible for f(L) to equal

zero for any value of L. However, it can be shown that it is not possible

for the conditions Pa < 0 and Pl < 0 to be satisfied simultaneously for the

given definitions of Pd and Pt.

Now suppose that Pd = 0. Then there is only one real value of t,

td = -p2/pl, where p(t) = 0. If in addition pl > 0, then p(t) is positive

for an other values of t. Therefore, p(t) > 0 V t and f(t) can be zero

for any value of t. The analytic root interval then is the entire time axis

(-oo, +0¢). But if p_ < 0 while pa = 0, then p(t) is negative at all values

of t other than td. In this case, the analytic root interval is the single point

td.

Finally, suppose that pa > O.

are

S __

The two real values of S where p(t) = 0

-p2 + v_

Pl

Let tl be the root ofp(L) defined with the minus sign in front of the square

root term and S2 be the root defined with the plus sign. When px > 0,

t2 > S1 andp(S) > Ofort < tl ands > S_. Then, there are two ahalytic

root intervals for f(S), namely (-oo, S1] and [S2, oo). When Px < 0, S2 < Sx

and p(S) > 0 for S, < S < S1. The single analytic root interval in this case

is [S2,S1].

t_ = 0 and 1>2 # 0 If px = 0 and p2 # 0, then p(S) has degree 1 and is

the straight line 2p2S + P3. The only value of S where p(S) = 0 in this case

is St = -p3/2p2. For the case where p2 < 0, p(S) has negative slope and its

value is nonnegative for L <_ St. The analytic root interval for f(S) is then

(-o0, St]. When P2 > 0, p(S) has positive slope and its value is nonnegative

for S > St. The analytic root interval for f(S) in this case is [St, 0¢).

Pl = 1_ = 0 The last case for p(S) occurs when both Pl and P2 are zero.

Then, p(S) has degree 0 and is simply equal to the constant pa. If p3 > 0,

then p(S) > 0 V S and the analytic root interval for f(S) is (-oo, oo). If

P3 < 0, then p(S) < 0 '¢ S and it is not possible for f(L) to equal zero for

any value of S.
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Intervals where f(t) may have roots

pl>0

pd<0 -c¢ <t <_.

Pd>0 --c¢ <t<tlandt2<t<c_

pl<O

Pd < 0 not possible

Pd = 0 t = td

pd>O t2 < t < ti

Pl = 0 and p_ _= 0

P2<O -o0 <t<tl

p2>O tt<t < oo

I Pl = 0 and p2 = 0

p3 < 0 @ (no roots possible)

p_>O -o0 <t<c¢

Table 4.4: The analytic root intervals for the generalized C-function

The analytic root intervals of f(t) for the cases outlined above are sum-

marized in Table 4.4. The cases where the analytic root interval degen-

erates to a single point or to the empty set can be shown to correspond

to special values of the coefficients of f(t). The behavior of f(t) in these

cases wiU be discussed in detail in the next chapter. For most of the re-

maining cases, the analytic root intervals are unbounded. This means that

additional techniques for bounding the zero search interval(s) are required.

Two such techniques, the dynamic spherical approximation and the physi-

cal constraints, are developed in the following sections.

4.3 The Dynamic Spherical Approximation

A simple way to obtain finite bounds for the zero search of all C-functions

defined by A and B is to completely enclose .A and/3 by spheres. Any zeros

of the C-functions which occur at values of t where the spheres are disjoint
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cannot be valid collisions. Thus, the zero search can be confined to those

intervals of time, if any, when the sphere enclosing A overlaps the sphere

enclosing B.

In order to find the tightest bounds for the zero search interval, the

location of the centers of the two spheres and their radii should be chosen

such that the spheres have the minimum radii necessary to contain A and

B. Let the center of the sphere enclosing /3 be denoted C'b and let x b be

the position vector from the origin of the reference coordinate system to

C'b. Also, let rb denote the radius of the sphere enclosing B centered at C'b.

The problem of finding the values of xb and rb for the smallest sphere which

completely encloses the stationary (nonconvex) polyhedron B is a nonlinear

optimization problem. Unfortunately, the optimal solution cannot be found

analytically. Iterative techniques exist which will converge to the optimal

answer in computation time on the order of the number of vertices on the

convex hull of B. See, for example, reference [23].

Since this problem is auxiliary to the main goal of developing a collision

detection algorithm, these iterative techniques are not used in this thesis.

Instead, a simpler method is used to generate a suboptimal solution for

xb and rb. The first step for this method is to find the" maximum and

minimum values of the X, Y, and Z coordinates for the vertices of/3.

Then, the corresponding components of the vector x_ are set equal to the

arithmetic mean of these maximum and minimum values. This value of

x_ is the center of the smallest rectangular box which contains /_ having

edges aligned with the reference coordinate axes. This does not necessarily

coincide with the center of the smallest sphere which completely encloses

B. The minimum radius of the sphere enclosing/_ with center at the chosen

value for xb is the maximum distance from xb to a vertex of/_. If !_ is the

jth vertex vector of/_, then

3

The sphere enclosing A is chosen so that its center follows the trajec-

tory described by x(t) in addition to having the minimum radius necessary

to completely enclose .4 regardless of its orientation. The motion of the

center of the sphere enclosing .4 is restricted in order to simplify the test

determining whether the two spheres overlap by eliminating the need t.o

consider the rotational motion of A. Clearly, the center of the sphere en-

closing -4 that satisfies the above criteria is located at its center of rotation,
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C", and the corresponding minimum radius is just the maximum distance

of a vertex of A from C _'. Let r_ denote this minimum radius of the sphere

enclosing A with center at C _. Then,

= m xll il
i

where by definition the vertex vector al points from C _ to its ith vertex.

Any sphere not centered at C _ but moving parallel to C _ must have a radius

greater than r_ to completely enclose -4.

The quantities r_, rb, and _ are independent of the motion of .4 and

depend only on the locations of the vertices of -4 and B. Thus, the problem

of selecting their values should not be regarded as part of the collision

detection process. Rather, it should be considered a part of the process of

modelling the shapes of A and B. The values of these three quantities can

be precomputed and stored as part of the data representing a particular -4

or B, along with its face normal, edge, and vertex vectors.

The problem now is to determine if the sphere of radius r_ with center at

C _ moving along the linear trajectory x(t) = xo +v_ overlaps the stationary

sphere of radius rb with center at C b and, if so, when. The velocity vector

v is assumed to be nonzero. (The case of static spherical approximation

where v = 0 and x(t) = x, will be discussed in Chapter 6.)

The magnitude of the vector x(t)- xb is the distance between the centers

of the two spheres at time t. Therefore, the two spheres enclosing -4 and B

will overlap whenever

jlx(t) - x_ll <_ (r_ +_b)

Substituting the equation for x(t) into this inequality gives

il¢ +  II_-< +

where do -- xo- x b. The vector do is constant and its magnitude represents

the initial distance between the centers of the two spheres. This inequality

is also the criterion which determines when C _' moving along the given

linear trajectory wiU lie inside or on the surface of the stationary sphere of

radius R = re, +rb with center at C b. These two interpretations of dynamic

spherical approximation are illustrated in Figure 4.1.

The inequality above can be transformed into a quadratic inequality.

This is a useful form because the objective here is to find the values of t
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The sphere enclosing .A overlaps the sphere enclosing B between t = T1 and

t =T2.

_;=Tz /

c" lies inside the sphere of radius R = r_ +rb centered at C b between t = T1

and t = T2.

Figure 4.1: Two depictions of dynamic spherical approximation
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for which overlap of the two spheresoccurs. Squaring both sidesof the
inequality gives

IIdo+ v_ll_= <do+ v_,do+ ,¢><_R'

Expanding the squared magnitude of do + vt, subtracting R 2 from both

sides, and combining terms of the same degree in t gives

(v, v) t 2 + 2<do, v) t + <do, do)- R 2 < 0

The graph of the quadratic on the left-hand side of the inequality above

is a parabola which curves upward because (v, v) > 0. The three possi-

bilities for the behavior of this quadratic that depend on the value of its

discriminant

d, = <do,v> - <v,v>[<do,do>- R
are presented below. Graphically, these possibilities correspond to the

parabola lying entirely above the zero axis, touching the zero axis at its

vertex, and intersecting the zero axis at two real values of t.

d, < 0 First if d, < 0, then there are no real values of t where the

quadratic equals zero. The parabola then lles entirely above the zero axis

and the quadratic is positive for all values of t. This means that the sphere

enclosing A never overlaps the sphere enclosing B, or equivalently that C a

always lies outside the stationary sphere of radius R centered at C s. Hence,

A and B are never close enough to come into contact. No zero search

of the C-functions is required in this case because the dynamic spherical

approximation has determined that a collision between A and B is not

possible. This does not mean that there are no values of t where the C-

functions equal zero. However, these zeros will not represent a collision and

are not of interest.

ci, = 0 Second, if da = 0, then the quadratic equals zero only when

<do,v>
_I$ -- --

<v,v>

In this case, the parabola touches the zero axis only at its vertex t,,. The

sphere enclosing ,4 is tangent to the sphere enclosing B when t = t,, and
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is outside of the sphere enclosing/3 for all other values of t. Equivalently,

C" lies on the surface of the stationary sphere of radius R centered at C b

for t = t,, and outside of this sphere for all other values of t. Thus, t,, is

the only value of t where A and/3 can possibly come into contact. No zero

search of the C-functions is required in this case. Whether or not A and

/3 are actually in contact at t_ depends on the orientation of A. A static

check of the three collision conditions for the configuration of A at t_ will

determine if t,, is a valid collision time.

d. > 0 The third and final case is d, > 0. In this case, there are two real

values of t where the quadratic equals zero at

- (do, v) + vr /.
(v,v)

Let Ti be the root of the quadratic defined using the minus sign in the above

equation and T2 be the root defined using the plus sign so that T_ > Ti.

The parabola crosses the zero axis at the two points Ti and T2. The part of

the parabola between these two values of t lies below the zero axis. Thus,

the value of the quadratic is nonpositive for T1 < t < T2. In this interval,

the sphere enclosing .,4 overlaps the sphere enclosing /3. In other words,

C _ lies on or inside of the stationary sphere with radius R centered at C b

in this interval. The only physically possible contacts between ,4 and B

must occur between T1 and T2. The zero search of the C-functions is then

restricted to the finite interval [T1,T_].

4.4 The Physical Constraints

The search for the zeros of the C-functions will only be performed for the

case when dynamic spherical approximation gives a nondegenerate search

interval IT1, T2]. This bounded interval applies to the zero searches for all

C-functions defined by A and B. Even though the spheres enclosing A and

/3 overlap in this finite interval, it is possible that the two features of .,4 and

/3 which define a specific C-function never come into contact for the given

trajectory of A. This results from the approximation of.,4 and/3 by spheres

where the sizes of the spheres are determined by the maximum "size" of

the features of A or/3. Another possibility is that the features defining a
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C-function are close enough for contact to occur only within some smaller

subintervalof the overallsearch interval [TI,T2].

The physical constraints are introduced to fund bounds on the zero

search interval for a particular C-function. The results of the physical

constraints apply onl!lto this C-function, unlike the results of dynamic

sphericalapproximation which apply to allC-functions. They are used in

conjunction with the dynamic sphericalapproximation to determine ifand

when it is possible for the two features defining this C-function to come

into contact. Like the dynamic spherical approximation, only the transla-

tion of A is used to check the physical constraints. Whereas the dynamic

sphericalapproximation considers the overallsizesof A and B, the physical

constraintsdepend only on the "sizes" of the features of A and B which

definethe given C-function.

The procedure for deriving the physical constraintsisto find the region

surrounding the stationary feature of B such that a value of x(t) on or

insideof thisregion represents a position for A where itispossible for the

feature of .4 to touch the feature of B. The presence of the other features

of .4 and B isignored in finding thisregion. The "size"of a feature of .A is

represented by the maximum distance from C" to any point on that feature.

The physical constraint region is then defined as the set of points whose

minimum distance to points on the feature of/3 islessthan or equal to this

"size" of the feature of .A. The finite "size" of the feature of B insures that

this region is bounded.

The physical constraint region is completely contained in the sphere

of radius R centered at C b used for the dynamic spherical approximation.

This is because R is defined as the sum of the maximum distances from C _

to any point on the surface of .A and from xb to any point on the surface

of B.

When G'_ is located on or inside the physical constraint region, orienta-

tions of .A exist such that the feature of .A touches the feature of B defining

the C-function. Conversely, when C _ is located outside of this region, there

is no orientation of .A which can bring these two features into contact. A

zero of the C-function for a value t where x_t) is outside of this region

obviously cannot satisfy the third collision condition.

The shape of the region representing the physical constraint depends on

the type of the C-function. Once this shape is known, conditions can be

formulated that determine if and when it is possible for C _ to lie on or in
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the region for its linear trajectory xo + vt. The next three sections derive

the physical constraint conditions for type (a), (b), and (c) C-functions,

respectively.

4.4.1 The Type (a) Physical Constraints

A type (a) contact, represented by a zero of the C-function f_,_, occurs when

some part of face i of A touches vertex j of B. The physical constraint for

this type of C-function determines if and when it is possible for the moving

polygon representing face i of A to touch the stationary point which is the

jth vertex of 13 for some orientation of A. Any zero of f_,_ which occurs at
a value of t that does not satisfy the physical constraint must occur when

vertex j of/3 lies in a part of the plane P_ containing face i of A that is

outside of the polygon representing the face itself. Such a zero of f_,_ will

not satisfy the third collision condition and, therefore, cannot represent a
valid collision.

The "size" of face i of A is the maximum distance of any point on face

i of A from C a. This is just the maximum of the magnitudes of the vectors

representing the vertices of face i of A. Let this size be denoted r_' where

r 7 = maxtia_ H k E {vertices of A bounding face i}
k

Clearly, it is possible for face i of A to touch vertex j of 13 only if the

distance between C a and vertex j of/3 is less than or equal to r_'. The set

of all points at a distance less than or equal to r_' from vertex j of/3 is

simply the region bounded by the sphere of radius r_' centered at vertex j

of/3. This spherical region representing the type (a) physical constraint is

shown in Figure 4.2.

The exact physical constraint inequality for f_,"j is

IIx(t)- bSl t <_ r_'

where the magnitude of x(t) - b_ is obviously the distance of C a from

vertex j of/3 at time t. This condition is similar to the inequality used in

the dynamic spherical approximation with xb replaced by 1_ and R replaced

by r_'. Substituting the assumed linear trajectory for C" into this inequality

yields

IIdj +  tll ___
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z

7:

Vertex j of B

Figure 4.2: The exact physical constraint region for fi,_

where d_ = x_- hi. The vector dj is analogous to the vector do defined

for the dynamic spherical approximation. The magnitude of dj represents

the initial distance of C" from vertex j of B.

As was the case for the dynamic spherical approximation, the type (a)

physical constraint can be reduced to the requirement that t be such that

the value of a quadratic in t is less than or equal to zero. Following'the devel-

opment for the dynamic spherical approximation, the resulting inequality

is

(v, v) t 2 + 2<d_, v) t + <dj, dj)- (_?)2 < 0

The same three possibilities exist for the behavior of tMs quadratic as

were discussed for the dynamic spherical approximation. These possibilities

are distinguished by the value of the discriminant

and are summarized below.

_j < 0 If d_j < 0, the quadratic is positive for all values of t. Therefore,

C ° always lies outside the stationary sphere of radius r_' centered at vertex

j of B. Note that this case can occur even though C ° passes through the

larger sphere of radius R centered at C s. In this case, face i of A is never
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close enough to vertex j of _ for contact to be possible. Hence, the type

(a) C-function f_j can be eliminated from the zero search.

c_.j = 0 When d?j = O, then the quadratic equals zero only at time

(dj, v)
t a --

Iv,v)

C _ then lies on the surface of the sphere of radius r_ centered at bj for

t = t_ and is outside of this sphere for all other values of t. Thus, t_ is the

only value of t where it is possible for face i of .A to touch vertex j of B.

Note that t_ will either lie within the overall zero search interval [T1, T2]

or be equal to t,,, depending on the results from the dynamic spherical

approximation. In this case, the value of f_j need only be checked at

t = t_. If f_.j(t_) = 0, then the second and third collision conditions must

be checked for the configuration of .A at t_ to determine if t_ is a valid

collision of .A and 9.

_j > 0 When d_j > O, the two real values of t where the quadratic equals
zero are

-Idj, v)±
t=

Let ti be the root of the quadratic defined with the minus sign in the above

equation and t! be the root defined with the plus sign so that t! > tl. The

value of the quadratic is nonpositive for ti < t < t I . In this interval, C _ lles

on or inside the sphere with radius r_' centered at 1_. Any contact between

face i of A and vertex j of B must occur between ti and t s. Therefore, the

type (a) C-function f_ must be searched for allowable zeros in the finite

interval [ti, t! ]. This interval is a subset of the overall zero search interval

[T1, T2] determined by the dynamic spherical approximation.

4.4.2 The Type (b) Physical Constraints

A zero of the C-function fbj represents a potential type (b) contact between

vertex i of .A and some part of face j of 9. The physical constraint for this

type of C-function determines if and when it is possible for the moving

vertex of .,4 to touch the stationary polygon which is the face of 9. Any
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zero of f_j which occurs at a value of t that does not satisfy the physical

constraint will occur when vertex i of Jt passes through a part of the plane

pjb containing face j of B that is outside of the polygon representing the

face itself. Such a zero of f_j cannot satisfy the third collision condition

and cannot represent a valid collision.

Clearly, there is only one possible choice for the "size" of vertex i of

.A namely its distance from C ". Let this distance be denoted rib, so that

rib = IIai II. Contact between vertex i of A and face j of B is possible only

when the distance between C" and the point on face j of/3 closest to C" is

less than rib. The region that represents this constraint consists of all points

whose minimum distance from the polygon representing face j of B is less
b

than or equal to r i .

The shape of this region is more complicated than the sphere that repre-

sented the physical constraint for a type (a) C-function. It can be visualized

as the union of disjoint regions of three different kinds. The first region is

formed by extending face j of B for a distance of rib along and opposite

to its outward-pointing normal. This results in a solid volume whose cross

section is the polygon representing face j of/3 and whose length is 2rib. Face

j of B divides this solid into two equal sections of length rib. The second

type of region has the form of half of a right circular cylinder with radius

rib and length equal to the length of one of the edges of B bounding face

j. These half-cylinders have their axes along the appropriate edges of face
b

j of/_. The third type of region is a section of a sphere having radius r i .

These spherical sections are located with their centers at each of the ver-

tices bounding face j of B. The union of these three types of regions forms

the type (b) physical constraint region. This construction is illustrated in

Figure 4.3 for the case where face j of B is a square.

Ideally, the physical constraint for f_j would be a set of conditions which

determine if and when C" lies within the region described above for the

assumed linear trajectory of .A. Because of the shape of this region, these

conditions are quite complex. An implementation of these exact constraints

could use more time than is saved by further bounding the zero search

interval for f_j. For this reason, an approximate volume will be suggested

that leads to a single condition for the type (b) physical constraint.

Consider the volume containing all points located at a distance less

b from plane P]. This volume is bounded by two planesthan or equal to r i

which are parallel to P] and located at a distance rib on either side of it.
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Figure 4.3: The exact physical constraint region for f_j

The thickness of this volume, 2rlb, is the same as the length of the first

region discussed above. This volume extends indefinitely in all directions

parallel to plane P_. In order to obtain a bounded region for the volume

approximating the exact type (b) physical constraint region, this infinite

volume is intersected with the sphere of radius R centered at C b. The

intersection of these two volumes is shown in Figure 4.4. The resulting

approximate region completely contains the region representing the exact

physical constraint for f_j.

Because of the definition of the new region, there are two constraints

that determine if and when C _ lies within this region for its assumed tra-

jectory x(t). The first constraint determines if and when C _ will lie within

the sphere of radius R centered at C b. This is just the quadratic constraint

derived in section 4.3 for the dynamic spherical approximation.

The second constraint determines if and when C _ will lle within the

volume surrounding P] constructed above. The inequality that represents

this constraint when A is translating with constant linear velocity will nov¢

be derived. Because the volume is bounded by planes parallel to P], only
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Figure 4.4: The approximate physical constraint region for f_j

the motion of C" perpendicular to P_ need be considered. C'" will lie

between these planes whenever

where _ is the distance of P_ from the origin of the reference coordinate

system as measured along 4" The inner product of x(t) with _ represents

the distance of C ° from the origin of the reference coordinate system mea-

sured along _. When _ is subtracted from this inner product, the result

is the distance of C" from P_ itself measured along _.

Substituting the equation for x(t) into the above inequality gives

The first inner product represents the initial distance of C _' from the origin

of the reference coordinate system. The second inner product represents

the component of the velocity of C" normal to P_. Its sign determines

whether C _ is moving in a direction along _ or opposite to 4"
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When the component of the velocity normal to P_ is nonzero, that

is when (v, _.) _ O, 6TM has a component of translation in the direction

normal to plane P_. Because of this motion, it must pass through the

volume surrounding P_ in some finite time interval. In this case, the linear

inequality above is satisfied for the finite interval denoted by [ti,t/]. If

(v, _.) is positive, then

On the other hand, if (v, _.) is negative, then

When ( v, _.) = 0, C" does not move in the direction normal to P_. Any

motion of C _ is in a direction parallel to P]. Therefore, the distance of C _

from P_ measured along _. remains constant at its initial value. The linear

inequality reduces to the requirement that this initial value have magnitude
b.less than or equal to r i .

The above constraint will either be satisfied for all values of t or it will not

be satisfied for any values of t, depending on the value of x_. If x_ satisfies

this requirement, then C" always lies inside the volume surrounding P_. If
xo does not satisfy this requirement, then C" never lies within the volume

surrounding P_.

The quadratic constraint for the dynamic spherical approximation and

the linear constraint for the volume surrounding P_ must be satisfied simul-

taneously for C" to lie in the region approximating the type (b) physical

constraint. The quadratic constraint will be checked first in the collision

detection procedure because the results of the dynamic spherical approx-

imation apply to all of the C-functions. The linear constraint that deter-

mines if and when C'_ lies within the volume surrounding P_ depends on

the particular C-function f_¢ and will not be checked until this C-function

is examined by the collision detection procedure. Because its results can
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only be applied to a single type (b) C-function, this finear constraint will

be referred to as the type (b) physical constraint for the remainder of this

thesis.

In the discussion that follows, it will be assumed that the result of

checking the dynamic sphericalapproximation constraint isa finiteinterval

[2"i,T_] restrictingthe search for the zeros of allthe C-functions. Ifthisis

not the case, then there is no need for the collisiondetection procedure to

check the physical constraints for any of the C-functions because there is

no intervalof time where .A and B are close enough to come into contact.

Suppose that C _ is moving normal to plane P_ so that Iv, 4) _: 0. It

was previously shown that in this case the type (b) physical constraint is

satisfied in a finite interval [_i,t/]. The interval [tl, tf] does not necessarily

overlap with the interval determined from the dynamic spherical approxi-

mation. If [ti, tS] and [T1, T2] do overlap, then C _ lles in the approximate

type (b) physical constraint region for t in the interval of overlap. There-

fore, the zero search for f_# is confined to this interval of overlap. If the

two intervals Its, t/] and IT1, 2"2] do not overlap, then C _' never lies in the

approximate region representing the type (b) physical constraint and no

zero search is necessary for f_#.

Now suppose that C" is moving parallel to plane P_. In this case, the

result of the type (b) physical constraint depends on the value of xo as

explained above. If the type (b) physical constraint is always satisfied, it

provides no further bounds on the zero search interval beyond the bounds

found from the dynamic spherical approximation. On the other hand, if

the type (b) physical constraint is never satisfied for any t, then C _' never

lles in the approximate type (b) physical constraint region and f_# need not

be searched for its allowable zeros.

4.4.3 The Type (c) Physical Constraints

The type (c) C-function f_# models contact between edge i of ,4 and edge

j of/3. The physical constraint for this type of C-function determines if

and when it is possible for the moving edge of .,4 to touch the stationary

edge of/3. A value of t where f_,j(t) = 0 that does not satisfy the physical

constraint occurs when the intersection point of the lines containing the

two edges lies outside of the segments representing edge j of/3 and edge i

of .A. Therefore, the third collision condition cannot be satisfied for such a
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Figure 4.5: The exact physical constraint region for f_j

zero of f_j.

The "size" of edge i of ,4 is the maximum distance of any point along

edge i of .4 from C _. This is just the larger of the magnitudes of the vectors

representing the vertices at the endpoints of edge i. Let this distance be
wherecalled r i

- max{II il, II II}

In this equation, _ and _2 are the vectors representing the vertices of .4

at the endpoints 'of e_. Contact between edge i of A and edge j of/_ is

possible only when the distance between C" and the point on edge j of

B closest to C a is less than or equal to r_. The region representing this

constraint consists of all points whose minimum distance from edge j of B

is less than or equal to r_. This region is the union of three disjoint regions.

The first region is a right circular cylinder of radius r_ and length equal to

the length of edge j of B whose axis is edge j of B. The remaining two

regions are hemispheres with radius r_ whose centers are at the two vertices

at the endpoints of edge j. The complete region resulting from the union

of the cylinder and the two hemispheres is illustrated in Figure 4.5.

As was the case for the exact type (b) physical constraint, the condi-

tions that determine when C a lies within the region shown in Figure 4.5

are somewhat complicated. Analogous to the type (b) situation, the exact

region is approximated by a simpler volume that results in a single inequal-
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Figure 4.6: The approximate physical constraint region for f_=,_

ity condition for the type (c) physical constraint. The approximate volume

for the type (c) physical constraint consists of the intersection of an infi-

nite "tube" with radius r_ and axis along the line containing edge j of B

with the sphere of radius R centered at Cb. This intersection is shown in

Figure 4.6. The region representing the exact physical constraint for f_=,j is

completely enclosed by this new volume.

There are two separate conditions that must be satisfied simultaneously

for C = to lie within the regions intersecting to form this new volume. As

before, the first condition determines if and when C = lies within the sphere

and is represented by the quadratic inequality derived for the dynamic

spherical approximation. In this case, the second condition determines if

and when C _ lies within the tube around _. Because the tube has infinite

length, this condition depends only on the motion of C = normal to edge j

of/_.

Let t_j be the unit vector pointing along edge j of B where t_j =

_/11 _ II. The component of any vector p that is normal to edge j of B is

found by simply subtracting its component along u_j from the vector itself.
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Let this component be denoted by a prime superscript. Then

Define x _ to be the component of the position vector of C'a normal to _.
Then

x'(t) - xo'+ v't
where xo' is the component of the initial position of C a normal to edge j

and x/is the component of its velocity vector normal to edge j.

C a lies within the tube surrounding edge j of B whenever the perpen-

dicular distance between it and the line containing edge j of _ is less than

or equal to r_. The perpendicular distance from C a to the line containing

edge j is [[x_(t)- hj_'[[ where h/l' is the component of the vector represent-

ing the tail vertex of _, hj_, normal to _. The choice of the tail vertex

vector in the above equation is arbitrary. It can be replaced by any vector

that terminates on the line containing edge j of _ because all such vectors

have the same component normal to u_j.

Now, the constraint for C a to lie in the tube around _ becomes

IIx'(t)- <_
Substituting the expression for x'(t) into this inequality gives

II + Ctll< ,i
where d_ = xo'- hj_'. This constraint is analogous to the physical con-

straint for a type (a) C-function with d_ replaced by d_, v replaced by

v j, and r_' replaced by r_. It reduces to a requirement on the value of a

quadratic in t as shown below:

<¢, ,/)t 2 + 2( _,, ,_')t +(_, _) - Cry)2 < 0

There are three possible results of this constraint depending on the

discriminant of the quadratic on the left-hand side of the inequality above.

Let _ be this discriminant where

The three cases distinguished by the value of diej are briefly discussed in

the following paragraphs. They correspond to the three cases discussed

in section 4.4.1 for the type (a) physical constraint. It is assumed that

the dynamic spherical approximation has yielded the finite interval IT1, T2]
before this constraint is checked.
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_j < 0 When _ < 0, the quadratic is positive for all values of t. There-

fore, C _ always lies outside the tube around edge j of B. Note that this

case can occur even though C _ passes through the larger sphere of radius

R centered at C b. Because C _ never lies in the region approximating the

type (c) physical constraint, f_j can be eliminated from the zero search.

_j = 0 When _j = 0, C _ lies on the surface of the tube only for

( d_,, ¢)
to-

(e, ¢)

and outside of this tube for all other values of t. The value of t¢ is checked

to see whether it lies between T1 and T2. If t¢ does lles within the overall

zero search interval [T1, T2], C _ lies in the approximate type (c) physical

constraint region at t = t¢ and the value of f_,j need only be checked at

this point. If f_,j(t¢) = O, then the second and third collision conditions are

checked for the configuration of A at tc to determine if tc is a valid collision

of A and B. If t¢ does not lie between T1 and T2, then C _ never lies in the

approximate physical constraint region and f_j can be eliminated from the

zero search.

_j > 0 When d_j > 0, C _ lies on or inside the tube in the finite interval

Its, tf] where

(v,v') and t!- (v,'v')

This interval must be checked to determine if it overlaps with the interval

[T1,T,_]. If [t_,tS] and [TI, T_] do overlap, then C _ lles in the approximate

type (c) physical constraint region in the interval of overlap and the zero

search for f_,_ is confined to this interval of overlap. If the two intervals

do not overlap, then C" never lies in the approximate physical constraint

region and no zero search is necessary for f_j.

Recall that the quadratic constraint for the dynamic spherical approx-

imation will be checked first by the collision detection procedure and that

its results apply to all of the C-functions. The quadratic constraint that de-

termines if and when C _ will lie within the infinite tube around _ applies
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only to the particular C-function f_j and will be referred to as the type

(c) physical constraint for the remainder of this thesis. This constraint for

the C-function f_ is only checked if the result of the dynamic spherical

approximation is a finite interval IT1, :/'2] in which to search for the zeros of
the C-functions.

4.5 Summary of Methods for Bounding the
Zero Search

In section 4.1, it was shown that the generalized form of the C-functions,

f(t), includes terms that are transcendental in t. The zeros of such a

function must be found using a numerical search procedure. Sections 4.2

through 4.4 have presented three methods for bounding the interval of time

over which this numerical procedure must be executed. This section will

briefly discuss the order in which these various methods wiU be used by the

collision detection procedure.

The dynamic spherical approximation is the first method of bounding

the zero search region to be used by the collision detection procedure. The

results of this approximation apply to all of the C-functions defined by

the features of A and/3. When the quadratic inequality for the dynamic

spherical approximation is satisfied for a finite interval [T1, T2], contact

between ,4. and 13 is possible only for values of t in this interval. Therefore,

the only zeros of any C-function that can represent valid collisions must

occur in this interval. Hence, the zero search for all of the C-functions can

be restricted to this interval.

Once an overall search interval [T1,T_] has been found from the dy-

namic spherical approximation, the C-functions are examined individually.

The physical constraint and analytic root intervals are checked for each

C-function. The physical constraint for a C-function is checked before its

analytic root intervals are determined. There are three reasons for this.

First, it is easier to check the physical constraint than to determine the

analytic root intervals because the physical constraint depends only on the

translational motion of ,4. The analytic root intervals can only be deter-

mined after the six coefficients of f(t) for this C-function are found. The

values of these coefficients depend on both the translational and rotational

motion of .A. Second, the analytic root intervals of a C-function are not al-

149



ways bounded. However, any interval of time where the dynamic spherical

approximation constraint and the physical constraint are both satisfied is
bounded. The bounds from these two constraints must be available to re-

strict the zero search to finite subsets of any infinite analytic root intervals.

Finally, there is no need to find the analytic root intervals if the physi-

cal constraint is not satisfied because any zeros of the C-function cannot

represent valid collisions.

A more detailed description of the hierarchy of the methods for bounding

the zero search will be given in Chapter 6. This includes a discussion of

how the applicability intervals are used in conjunction with the methods

presented in this chapter. The procedures used to find the zeros of the

C-functions in the resulting finite intervals will be described in the next

chapter, Chapter 5.
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Chapter 5

Finding the Zeros of the C-functions

The second and third collision conditions have been used in Chapters 3

and 4 to develop techniques for bounding the intervals of time that must

be searched for the zeros of the C-functions. The first collision condi-

tion requires that the collision detection algorithm locate the zeros of the

C-functions in any bounded intervals that result from applying these tech-

niques. All of the C-functions were shown to have the form of the gener-

alized C-function f(t) introduced in section 4.1.6. This chapter presents

methods for locating the zeros of f(t).

Twelve cases for the generalized C-function are identified depending on

the values of its six coefficients. In some of these cases, f(t) has no zeros

and in some other cases, its zeros can be found analytically. However, in

general, an analytic solution for the zeros cannot be found. Numerical

procedures are developed for these cases to iterate for the zeros of f(t) in
a bounded search interval.

The twelve cases for f(t) can be divided into two classes, referred to as

classes I and /7, respectively. A C-function falls into class I if it satisfies

the condition that its coefficients m: and ms are both zero. All type (b)
C-functions are included in class I. Class I can be subdivided into seven

cases. These cases are distinguished by conditions on the values of the four

nonzero coefficients rot, ll, 12, and Is. The seven cases of class I C-functions
are discussed in section 5.1.

Class /7 C-functions are distinguished by the property that at least

one of the coefficients rn2 and ms is nonzero. Only type (a) or type (c)
C-functions are included in class /7. Class //can be subdivided into five

cases. These are discussed in section 5.2.

5,1 Class I

The two coefficients rn2 and ms are both zero for f(t) in class I. This

means that terms of the form t cos(cat) and t sin(cat) are absent from such

f(t). There are seven possibilities for the behavior of f(t) in this class.
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These range from the trivial casewhere f(t) = 0 to the most general case

where

f(t) = (mlt + 11) + l_ cos@t) + Is sin@t)

Four of these cases occur when ml is zero as well as m2 and ms. In these

cases, the linear term mlt is also missing from f(t). The coefficient rnl is

nonzero for the last three cases so that the linear term m_t is present.

The seven cases for f(t) are discussed in detail in the sections below.

This includes a confirmation of the analytic root intervals predicted by

the criteria of section 4.2. Also, either a formula or a numerical search

procedure is given for finding the zeros of f(t) in those cases where zeros are

possible. A brief summary of the seven class/cases is given in section 5.1.6.

,5.1.1 Case 1

Case 1 of class I for the generalized C-function occurs when all six coeffi-

cients of f(t) are zero. In this case, f(t) = 0 V _. The analytic root interval

for f(t) in this case is the entire time axis because Pl = p2 = ps = p(t) = 0.

When f(t) = 0, the configuration of .,4 is moving along the C-surface

defined by f(t) in C°p_:_ (.4). If the initial configuration is located in free

space, then it is originally located in a part of the C-surface that is not on

the boundary of CO_. Suppose that the trajectory of the configuration of

.,4 moves toward that part of the C-surface which is part of the boundary

of CO_. Consider the point where the trajectory of the configuration of .A

touches the edge of that part of the C-surface which is on the boundary of

CO_tB. By definition, this edge represents the intersection of the C-surface

defined by the C-function that is always zero with one or more C-surfaces

defined by other C-functions whose value is not always zero. Therefore,

when the trajectory touches this edge, there will be at least one other C-

function whose value equals zero at that configuration.

As an example, consider the type (b) C-function f_i. If f_,_(t) = O,

then the trajectory of .,4 is such that vertex i of .A moves in the plane P_

that contains face j of/3. This means that the configuration of .,4 moves

along the C-surface defined by f_i. If the initial configuration is in free

space, then vertex i of .A lies in that part of plane P_ that is outside of

the polygon representing face j of/3. Suppose that the rotational motion

of A is such that f_ is applicable as vertex i moves toward the polygon

representing face j of/3. Then, when vertex i touches an edge of face j
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of B, the configuration of .A touches the edge of that part of the C-surface

defined by f_bd which lies on the boundary of COOs. But there axe several

other contacts which occur at this point besides the type (b) contact defined

by f_j. There is another type (b) contact between vertex i of A and the

other face of/_ which meets at the edge of face j of _. There are also type

(c) contacts between all of the edges that meet at vertex i of .4 and the

edge of face j of/_. The C-functions representing these other contacts are

all equal to zero as well as f_j when vertex i touches an edge of face j of/_.

If a C-function whose value is always zero represents a valid collision of

.A and/_ for some t, the trajectory of the configuration of .A must intersect

the edge of that part of the C-surface defined by the C-functlon that is on

the boundary of CO_B. The collision that takes place at this intersection

point can be detected by checking other C-functions whose values are not

always zero. If the trajectory of the configuration of .2, always stays in that

part of the C-surface defined by a zero-valued C-function that is not part of

the boundary of CO_, that C-function does not represent a valid collision

of ,4 and 8 for any t.

Thus, a C-function that is always zero can be ignored by the collision

detection algorithm.

5.1.2 Case 2

For the second case of classI C-functions,only the coefficient11isnonzero.

Both 12 and Is as well as ml, m2, and ms are zero. In thiscase, f(t) is a

nonzero constant, that is f(t) = 11 _ 0V t. Thus, there are no values of t

where f(t) equals zero. Clearly, there is no need to search for zeros of f(t).

A C-function with constant, nonzero value cannot represent a potential
collision of the features of ,4 and B which define it.

5.1.3 Cases 3 and 4

At least one of the coei_cients12 or Isisnonzero for the third and fourth

cases of class I C-functions. The constant term 11 can be either zero or

nonzero. In general, f(t) has the shiftedsinusoldalform

f(t) = 11 +/_ cos(_t) +/s sin(wt)
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The two sinusoidal terms can be combined into a single term with constant

amplitude F and phase angle ¢S" The C-function becomes

f(t) = 11 + F cos(wt + ¢S)

where

and

F=V/_2_+/_>0

Fcos¢! = 12 -la
-Fsin¢, = 13 =*" @S=tan-l(--_-2) E[0'27r)

The zeros of f(t) occur at the values of t, if any, where

11

cos(cat+ Cs) = -_

Whether there are any values of t which satisfy this equation depends on

the value of the vertical shift 11 relative to the amplitude F of the sinusoidal

term. The value of II_/FI distinguishes the third and fourth cases for class

/.

For c=e 3, II_/FI > 1 or l_+l_-l_ < 0. t, this case, there are no values

of t where the shifted sinusoid equals zero. This is because the vertical

shift due to 11 is larger than the amplitude of the sinusoidal component of

f(t). No zero search is necessary in this case. A C-function satisfying these

conditions cannot represent a valid collision of the features of A and B that

define it.

For case 4, II_/FI < 1 or l_ -4-1_-l_ > O. Thus, the vertical shift due to

11 is smaller than the amplitude of the sinusoidal component of f(t). The

zeros of f(t) occur periodically where

{ }cat= 27r _ cos_1 (__) - ¢t + 2nTr

where n is an integer. Since the C-function has periodic zeros, its analytic

root interval is (-co, co). This can be verified by noting that pl = p2 = 0

andpz = ll+l_-l_ > 0 in this case. Only those of the periodic zeros

that lie in the bounded intervals found from the techniques discussed in

Chapters 3 and 4 need be considered by the collision detection algorithm.
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Note that the special case where 11 = 0 is included in case 4.

case, f(t) is the pure sinusoid

f(t) = hcos(, t) +tssin(,ot)
= F cos(_t + Cs)

and its zeros occur periodically where

{Ir12 }tat = 37r12 - _bs + 2n_"

for rt an integer.

In this

5.1.4 Case 5

The fifthcase of class I C-functions occurs when the two coefficientsl_ and

laare zero but the coemcient rrLiisnonzero. In thiscase,f(t) issimply the

straight line rnlt + 11. It has one zero at t = -ll/ml. The values of the

coefficients of p(t) are Pl = -m_ < O, P2 = -mill, and p3 = -l_. Therefore,

Pa = P_ - PlPa = 0 and the analytic root interval for f(t) =md + II is the

single point td = -P_/Px = -ll/ml.

5.1.5 Cases 6 and 7

For the two finalcases of classI C-functions,the coefficientrnl is nonzero

and at least one of the two coefficients17 ànd lais also nonzero. The form

of the generalized C-function is then:

f(t) = (rnxt -+- ll) --_/2 cos(6dt) + 13 sin(o, Jg )

Again, the two sinusoidal terms can be combined to obtain

f(t) = (rod + I_) + F cos(wt + _bf)

where F and _b/ are defined in section 5.1.3.

In these cases,Pl = -m_ < 0, P2 = -rn111, and Pa = l_ + l]- l_. The
7. 2value of the discriminant of p(t) is Pd = m_(12 + t32) > 0. Therefore, there is
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a finite analytic root interval for f(t), [t_,tl]. The bounds of this interval

are the two roots of p(t):

t I

_2

rn Zl- ImxlN/Q ==+ mlZl- ImxlF

These values are

= t2 = for rn >0

tl = _ t2 = _ for rnl<0
--ml , -- "rT/, 1

The bounds for the analytic root interval can be confirmed by examining

the equation for f(t). Since the value of the cosine term is constrained to

lle between -F and F, f(t) must be positive whenever rnd + 11 > F

and it must be negative whenever md + l_ < -F. Consider the regions

where t < t2 and t > t_. Suppose that rn_ is positive. Then for t < t2,

rnlt+l_ < -F and f(t) < 0 and for t > t_,rnd+l_ > F and f(t) > 0. Now

suppose that rnx is negative. Then for t < t2, rnd + It > F and f(t) > 0

and for t > tl, rnd + 11 < -F and f(t) < 0. Therefore, tl and t2 are the

bounds of the interval defined by the condition -F < rnd + 11 < F. There

must be at least one zero of f(t) in tMs interval because f(t) has opposite

signs for values of t to the left and right of this interval.

5.1.5.1 The First Two Derivatives off(t) for Cases 6 & 7

The presence of the linear term md in f(t) for cases 6 and 7 above means

that there is no analytic formula for the zeros of such f(t). However,

useful information for developing a numerical zero search procedure can

be gained by taking the first two derivatives of f(t). In fact, the criterion

that distinguishes case 6 from case 7 for the class I C-functions comes from

examining the first derivative of f(t).

The first derivative of f with respect to t is

= + t3cos@t)
= rnl - _F sin(wt + ¢1)
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By taldng one derivative of f(t), the linear term in t is eliminated and the

form of the first derivative is a shifted sinusoid. The second derivative of f

with respect to t is

= co@t) - sin@t)
= -_ 2F cos@t + _,)

Differentiating a second time has eliminated the constant term so that

d_f/dt 2 is a pure sinusoid.

The second derivative of f(t) measures its curvature. The points where

the second derivative is zero are the values of t where the curvature of f(t)

changes sign. These points occur whenever cos(_t + _bl) = 0. There are

two such points in every cycle of_t +ffl, at _t + _b! = a'/2 + 2nzr and at

_t + _bI = 37r/2 + 2n_'. These two points represent points where changes in

the sign of the curvature of f(t) from negative to positive and from positive

to negative occur, respectively.

The values of t, if any, where the first derivative of f(t) is zero are

potential relative maxima and minima of f(t). The form of df/dt is a

shifted sinusoid and it is easy to derive the condition under which df/dt

can equal zero. For [ml/@F)l > 1,'there are no values of t where the first

derivative is zero and f(t) cannot have any relative maxima or minima. For

Iml/@F)! - 1, the first derivative of f(t) equals zero once in each cycle

of _t + _b! when sin@t + _bf) = +1. These are at _t + _b! = 7r/2 + 2n_r

when rnl is positive and _t + _b! = 3_r/2 + 2rt_r when rnl is negative. The

value of the second derivative of f(t) is zero at these values of a_t + _bf. By

definition, the single point in a period of _t + _b! where both the first and

second derivatives of f(t) are zero is an inflection point for the C-function.

Thus, there are no relative maxima or minima for f(t) in this case.

The two cases described above are taken together as case 6 for class

I generalized C-functions. The condition that distinguishes this case is

Iml/@F)l ___1. Since f(t) has no relative maxima or minima, there can

only be one zero of f(t) between t_ and ti. If rnl > 0, this zero must occur

when the value of f(t) changes from negative to positive because f(t) is

constantly increasing. On the other hand, if rnl < 0, the single zero must

occur when the value of f(t) changes from positive to negative since f(t)

is constantly decreasing. The behavior of f(t) in this case is iUustrated in

Figure 5.1. This figure shows plots of the first and second derivatives of
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The generalized C-function f(t) has only one zero between t2 and tl.

T t I _, a/_ -¢-¢Jf
I

The first derivative of f(t) for a single period ofwt +¢! when Iml/@F)l > l

andre1 < 0.

dt 2

//_ "IT _n.\ I

The second derivative of f(t) for a single period of wt + ¢t"

x Change in sign of the curvature of f(t) ( d2f/dt _ = 0 )

Figure 5.1: The generalized C-function f(t) for case 6 of class I
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f(t) for one period of wt Jr ¢1 along with a sketch of f(t) itself.

For [ml/(wF)[ < 1, the first derivative of f is zero whenever sin(wt +

¢!) = ml/(_F). There are two such points in every cycle of wt + ¢1 at

= , :
First consider the values of til and 62 when ml is positive. In this case, 61

lies between 0 and a'/2 while 62 lies between 7r/2 and _'. The value of the

second derivative is negative at 61 and positive at 62. By definition, f(t)

has a relative maximum at/fl and a relative minimum at 62. Now consider

the case when ml is negative. The value of 61 lies in the interval (3a'/2, 27r).

This represents a relative maximum of f(t) since d2f/dt 2 is negative in this

interval. The value of 62 lies in the interval (a', 37r/2). The second derivative

is positive in this interval and 62 is a relative minimum of f(t). Since 61

and 62 are never exactly equal to 7r/2 or 37r/2, f(t) has no inflection points.

The condition Iml/( F)l < 1 distinguishes case 7 for class /generalized

C-functions. There can be multiple zeros of f(t) between t2 and tl in this

case because f(t) has periodic relative maxima and minima. An example

of the behavior of f(t) in this case is iUustrated in Figure 5.2. This figure

shows plots of f(t) and its first two derivatives. The relative maxima and

minima and the points where the curvature changes sign are indicated on

these plots.

5.1.5.2 The Zero Search Procedure for Cases 6 &: 7

One way of finding the zeros of a function in a bounded interval is to sample

the function at the bounds of the interval and at selected points within the

interval. The values of t at which the function is to be sampled form

an ordered sequence of test points beginning with the lower bound of the

search interval and ending with the upper bound of the search interval. The

values of the function are checked at each pair of consecutive points in this

sequence. If the value of the function has opposite sign at two consecutive

points, then there is at least one zero of the function located between them.

Some iteration method is then used to locate the zeros between these two

points.

The problem with the method described above is the selection of the

test points within the search interval. IdeaLly, these points should be chosen

so that the search procedure does not miss any zeros of the function located
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I I
I

I

The generalized C-function f(t) can have multiple zeros between t2 and tl.

d.¢
m

q_j
m i D

The first derivative of f(t) for a single period ofwt +_b! when Imx/@F)l < X

andre1 < 0.

¢tt.z

The second derivative of f(t) for a single period of wt + _bf.

x Change in sign of the curvature of f(t) ( d2f/dt 2 = 0 )

[] Relative maximum ( dr�dr = O, d2f /dt 2 < 0 )

(D Relative minimum ( dr�dr = O, d2f /dt 2 > 0 )

Figure 5.2: The generalized C-function f(t) for case 7 of class I
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in that interval. This could be achieved by finding test points that insure

that there is no more than one zero of the function in the interval defined

by two consecutive points. An iteration method could then be chosen which

would be guaranteed to converge to the single zero of the function between

two test points that yield values of the function having opposite signs. The

ideal sequence of test points would also have the property that a zero of the

function occurring exactly at one of the test points would be the only zero

of the function in the larger interval defined by its two neighboring points

in the sequence.

These conditions are satisfied by the set of test points containing those

points in the search interval where the first derivative of the function is zero.

All zeros must be located either at a test point or between two consecutive

test points because any relative maxima and minima of the function are

included in this sequence. The convergence of certain methods chosen to

iterate for the zeros is improved by including the points where the second

derivative of the function is zero in the set of test points. An explanation for

this will be given later when the choice of the iteration method is discussed.

Fortunately, it is possible to generate the points where the first or second

derivative is zero analytically for cases 6 and 7 of the class I C-functions.

Because the points where the first and second derivatives of f(t) are

zero occur periodically with cat + _b!, the zero search interval is divided into

subintervals at the points separating cycles of cat + _bf. The bounds of a

subinterval will normally be points where cat + _b! is equal to consecutive

multiples of 27r. The upper or lower bound • of a subinterval is replaced by

the upper or lower bound of the overall search interval when the overall

bound lles in the period defined by the current subinterval.

The basic pattern of test points for a subinterval that is a full cycle

of cat + _! differs for cases 6 and 7. For case 6, only the points where

• the second derivative is zero are required because either the first derivative

cannot equal zero or the points where it equals zero are coincident with

points where the second derivative is also zero. The pattern then consists

of the two points listed below

cat + _! Description

7r/2 curvature sign change from - to +

31r/2 curvature sign change from + to -

For case 7, the points where either the first or second derivative is zero are
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used. These points are distinct for this case. When ml is positive, the basic

pattern is

tat + ¢! Description

61 relative maximum

7r/2 curvature sign change from - to +

6z relative minimum

37r/2 curvature sign change from + to -

The basic pattern for negative rnl is

cot + e f Description

7r/2 curvature sign change from - to +

62 relative minimum

37r/2 curvature sign change from + to -

61 relative maximum

To convert these basic pattern points to the relevant values of t in the

period defined by the current subinterval, the appropriate multiple of 27r

is added, the phase angle ¢/ is subtracted, and the result is divided by w.

If the subinterval defines only a partial cycle of wt + ¢I, then only those

points in the pattern which fall within its bounds are used.

To summarize, the zero search procedure for cases 6 and 7 first divides

the overall search interval into whole or partial cycles of cot +¢_. It proceeds

as follows in a single subinterval. First, an ordered sequence of test points

is generated that includes the bounds of the subinterval and those points in

the subinterval where the first or second derivative of f(t) is zero. Next, it

examines the values of f(t) at consecutive pairs of test points. If the value

of/(t) is zero at a point, then it retains this point as a zero of f(t) and

proceeds to the next point. If the value of f(t) changes sign between points,

then a single zero of f(t) must be between them. The search procedure then

invokes an iteration method for finding this zero of f(t). This process is

repeated for each subinterval within the overall search interval.

This search proc.edure is complete except for the choice of the itera-

tion method for finding a zero of f(t) between two consecutive test points.

The two methods considered for this thesis are linear interpolation and its

variant, the secant method. For these methods, only values of the function

itself are used to find a zero between two starting points where the function

values have opposite sign. No evaluation of any derivatives of the function
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is required. A brief summary of linear interpolation and the secant method

is presented in Appendix B. More detailed descriptions can be found in

references [26,27,28].

Linear interpolation is guaranteed to converge to a zero that lies between

its starting points if the function is convex between them. A function is

convex in a given region if the sign of its second derivative is the same at

all points in the region. This is obviously the case for the sequence of test

points described above. By including the points where the second derivative

is zero among the test points, these points separate each subinterval into

regions where f(t) is convex. This is the primary reason for including these

points in the sequence for cases 6 and 7. As noted previously, only the

relative maxima and minima of f(t) where its first derivative is zero are

necessary to insure that no zero of f(t) is missed in case 7. The points

where the second derivative is zero are not absolutely necessary in case 6

because it is known that there can be only one zero of f(t) between t_ and

ft. Linear interpolation could be applied directly with the starting values

of tz and ft. However, including the points where the second derivative

equals zero insures convergence of the linear interpolation.

Tests using linear interpdation to locate the zeros of sample C-functions

in cases 6 and 7 of class I showed that as many as ten or fifteen steps were

necessary for convergence in some cases. In other cases, the interpoiated

approximation to the zero osciUated between two values differing in the least

significant digit for the last several iteration steps. When the secant method

was used to locate the zeros for these same sample cases, it was found

to converge in fewer steps than linear interpolation. Also, no oscillatory

behavior was observed using this method. For these reasons, the secant

method was chosen as the iteration method for the numerical zero search

procedures implemented for this thesis.

Although there is no guarantee of convergence for the secant method in a

region where the function is convex, the points where the second derivative

is zero are retained in the set of test points. The reason for retaining these

points is that the iteration will converge more rapidly when its starting

values axe closer to the zero. The points where the second derivative equals

zero can be included with little additional expense in terms of computation

time. Adding these points to the test sequence makes the intervals between

consecutive search points smaller and any zero of f(t) is more closely bound.
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5.1.6 Summary of Class I

The seven class I cases for f(t) are summarized in Table 5.1. This table

gives the conditions holding for each case as well as the special forms of

f(t) for each case. Case I is the trivial case where f(t) -= 0 and can be

ignored by the collision detection algorithm. There are no zeros of f(t) for

cases 2 and 3. There are analytic formulas for finding the zero(s) of f(t)

for cases 4 and 5.

All of the C-functions satisfy the conditions for cases 1, 2, and 5 if .A

is translating but not rotating. If .A is rotating but not translating, then

all of theC-functions qualify for cases 1, 2, 3, or 4. The collision detection

algorithm is greatly simplified for rotation only or translation only because

the C-functions either have no zeros or they have zeros which can be found

analytically.

The zeros of f(t) are found by a numerical search procedure in cases 6

and 7. The search procedure creates a sequence of test points consisting

of the bounds of the search interval and any values of t within the interval

where the first or second derivative of f(t) equals zero. The value of f(t) is

computed at each of the test points. If f(t) changes sign between any two

consecutive test points, the secant method is used to iterate for the zero of

f(t) located between the two points.

5.2 Class H

The second class for the generalized C-function occurs when f(t) satisfies

the condition that either rn2 or m3 is nonzero. A term of the form of

tcos(o:t)or tsin(o:t)is always present in f(t) for thisclass.

There are five cases of f(t) in class H. Cases 1 and 2 depend on a

special proportionality between the three coefficients ml, m2, and m3 and

the three coefficients 11, 12, and 13. This leads to an analytic expression for

the zeros of f(t) in these two cases. The proportionality is not satisifed for

the other three cases in class II. A numerical search procedure is required

to find the zeros of f(t) in these cases.

Cases 3, 4, and 5 are distinguished by the values of ml and 11. The

most general case is case 5 where both ml and 11 are nonzero. The second

derivative of f(t) for case 5 has a special form that is exploited to develop

the numerical zero search procedure. For cases 3 and 4, ml is zero. In case
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The Seven Class I Cases

Case ] Distinguishing Conditions

1 ml=ll=12=Is=0

2 ml =12 =Is = 0 , 11 _ 0
3 ml = 0, I_ _: 0 or la _: 0

I1/ V/-_2+ I_ > 1

4 m_ = 0, 12 _: 0 or I_ _ 0

5 ml fi 0, 12 = Ia = 0
6

7

Class /Forms of f(t)

Case(s) Formof/(t)
1 f(t)=_O

2 f(t) = 1, _ 0

3 s_4 f(t) =tl +t_cos(_t)+t3sin@t)
5 f(t) = mlt +11

6_ 7 f(t)= mlt+tl)+t_cos_t)+t3sin(,,,t)

Table 5.1: The seven cases for class I of the generalized C-function
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3, 11 is also zero. The form of f(t) or its first derivative for these special

values of rnl and 11 is the same as the form of the second derivative of f(t)

in case 5. This leads to possible simplifications in the case 5 numerical zero

search procedure when applied to cases 3 and 4.

More detailed descriptions of the five cases in class//are presented in the

sections which follow. The last section gives a summary of the conditions

defining the five cases and the form of f(t) for each case.

5.2.1 Cases 1 and 2

For the firsttwo cases of classIIfor the generalized C-function, a constant

c E _ existssuch that

ll=crnl 12=crn2 13=crn3

This includes the special case where 11 = 12 = Is = c = 0.

If the above condition is satisfied, then f(t) can be factored into the

product of a linear term and a shifted sinusoidal term. The factored form

of f(t) is

f(t) = (t +c){ml+m2cos@t) +m3sin@t)}

= (t +c){ml+Mcos(, t

where

M =
= E [0,2,,)

77/, 2

Clearly, f(t) has a zero at t = -c. The other zeros of f(t), if any, are the
zeros of the shifted sinusoidal term.

Cases 1 and 2 of class II are distinguished by the relative values of the

vertical shift due to rnl and the amplitude M of the shifted sinusoidal term.

For case 1, Irnl/MI > 1 and the shifted sinusoidal component of f(t) never

equals zero. The zero at t = -c is the only zero of f(t) for this case.

For case 2, [rn_/Ml < 1 and the shifted sinusoidal component of f(t) has

periodic zeros. The zeros of the sinusoidal component occur at the values

of t where cos(_t + _b,,,) = -rnl/M. These points are
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where n is an integer. In this case, only those zeros that lie in the bounded

search intervals found from the techniques discussed in Chapters 3 and 4

need be considered by the collision detection algorithm.

For case 1 and case 2, the values of p_ and ps, defined in section 4.2,

become c(rnl + ms z - rn_) = cpl and c_(ml + ms _ - m_) : c_pl, respectively.

Therefore, the discriminant Pd = P_- PiPs is zero. Case 1 corresponds to

pl - rng + ms2 - m_ < 0 where the analytic root interval is the single point

td = --P2/Pl = --c. Case 2 corresponds to pl = ml + ms 2 - rn_ > 0 where

the analytic root interval is the entire time axis. The function has zeros

in each period of wt + ¢,,_. Thus, the analytical prediction agrees with the
conclusion above.

5.2.2 Cases 3, 4, g_ 5

The remaining three cases of class //C-functions do not have a special

proportionality of the coefficients of f(t) because there is no constant c E

for which 11 = crnl, 12 = crn2, and Is = cms. In these cases, f(t) cannot

be factored into a product of simpler terms. No a_nalytic expression for the

zeros of f(t) can be found due to the presence of the t, tcos(wt), and/or

t sin(tat) terms. As was true for cases 6 and 7 of class I, an examination

of the first and second derivatives of f(t) gives insight into constructing a

numerical zero search procedure. 1 These derivatives are discussed in the

following two sections.

5.2.2.1 The First Two Derivatives off(t) for Case 5

Consider the most general case for class //where ml _ 0 and 11 _ 0. Both

a constant term and a linear term are present in f(t). These two terms

are eliminated by differentiating f(t) twice with respect to t. The first

derivative of f(t) with respect to t is

df
= + + (m,.+ cos(, t)+ + (m.,- sin( t)

IThe analysisofthe secondderivativeof/(t)and the resultingzerosearchprocedure

forthesecasesweresuggestedto theauthorby reference[22].
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The second derivative of f(t) with respect to t is

{[- rn2t + [,,,mst+ (2m +  h)l sin@t)}

The presence of terms of the form t cos(wt) and t sin(wt) in these two deriva-

tives means that there is no analytic formula for the values of t where they

are equal to zero. However, it is possible to analytically determine intervals

of t which contain one and only one point where the second derivative is

zero. This is explained in the next section.

5.2.2.2 The Second Derivative off(t) for Case 5

There is one special case for the coefficients of the second derivative of f(t)

which must be Considered separately. In this case, d_f/dt 2 can be factored

into a linear term and a pure sinusoidal term and the values of t where it is

zero can be found analytically. This special case occurs when there exists

a constant c2 E R for which

2ma-wl2 = c2(wm2) and -(2rn2+wls) = c2(wma)

This includes the two cases m2 = 2ms - wl_ = 0 and ms = 2rn2 + wl3 = O.

Multiplying the equation on the left by ms and the one on the right by rn2

and subtracting the two resulting equations gives

For convenience in the subsequent discussion, let the quantity 2 (rn_ + ms2)+

_v (m21s- rnsl2) be denoted d#. Thus, the condition d¢ = 0 is another way

to define this special case for d_f/dt 2.

Now, d_f/dt 2 can be factored into the product of two terms

= -w2(t - c2) {M cos(wt + ¢,,,)}

where M and ¢,,, are defined in section 5.2.1. Therefore, one point where

the second derivative is zero is t = c2. The other zeros of the second
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derivative occur periodically whenevercos(wt+ ¢,,_)= 0. Thesezeros axe

_t + _b,_ = _'/2 + 2n_" and _a_ + ¢,,, = 37r/2 + 2nlr where n is an integer.

When d_ _ 0, the expression for dZf/dt 2 cannot be factored into a

product of two simpler terms. However, the sine and cosine terms in the

expression for d_f/dt 2 can be combined into a single cosine term with a

time-varying amplitude F2(t) and phase angle ¢=(t). The new equation for
the second derivative is

d_f
dr---_ = _ {F_(t)cos(_t+ ¢_(t))}

where

F2(t) = _[-wm2t + (2ms- w/2)] 2 + [wrest + (2m2 + 0v/s)] 2

and

F2(t)cos ¢2(t) =

F_(t)sin ¢2(t) =

tan ¢,(t) -

-wm2t + (2ms - ovl_)

+Wrest + (2m2 + cola)

+wrest + (2m_ ÷ wla)
-wm_t + (2ms - w12)

Because there is no proportionality of the coefficients of the second deriva-

tive, the two linear terms in the definition of F2(t) cannot both be zero

simultaneously and F_(t) > 0 V t. Now, since w and F_(t) are both positive,

the second derivative can only be zero at the points where cos(wt +¢2(t)) =

0. These points are at _t +¢2(t) = _'/2 + 2nTr and 0vt +¢2(t) = 3_'/2 + 2n_r

for n an integer. When wt + ¢_(t) = n'/2 + 2n7r, the curvature of the func-

tion as measured by the value of its second derivative changes from positive

to negative. When wt + ¢2 = 3_'/2 + 2nTr, the curvature of the function

changes from negative to positive.

The points where the second derivative of f(t) is zero can also be defined

as the points that satisfy the equation

klTr

¢_(t) = -_t + -T

where k' is an odd integer. In other words, the points where d2f/dt _- =

0 are the points where the curve of ¢_(t) intersects one of the family of

lines y(t) = -wt + kqr/2. An intersection of the ¢_(t) curve with one of

the lines where k' E (...,-9, -5, -1, +1, +5, +9, ...]. represents a change
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in curvature from positive to negative while an intersection with one of

the lines y(t) where k' E {...,-11,-7,-3, +3, +7, +11,..:} represents a

change in curvature from negative to positive. By examining the behavior

of ¢2(t), the interval(s) ofwt where it will intersect a particular one of these

lines y(t) can be predicted.

First, consider the behavior of ¢2(t) as t ---+ -oo and t --_ +c¢. As

t _ -oo, the value of the cosine of ¢_(t) approaches the constant value

rn2/x/rn_ + rn_ and the value of the sine of ¢2(t) approaches the constant

value -rn3/%/rn_ + m_. Therefore, the value of ¢2(t) approaches a constant

angle denoted _/1 where

cos_l -- rn_

V!m + -m3
=* tan;_/1 - q [0, 27r)

_ -rn_ rn_

As t _ +oo, the cosine of the phase angle ¢2(t) approaches the constant

value -rn2/v/rn_ + m_ and the sine of ¢2(t) approaches the constant value

rn._/x/rn_ + rn_. Therefore, the value of ¢2(t) approaches a constant angle

denoted j32 where

=
=_ tan j32 - • [0, 27r)

__ rrt@ --ms

sinZ,

From the equations defining _91 and _2 it is clear that _32 =/91 4- 7r.

The phase angle ¢2(t) is either increasing or decreasing between j31 and

_2 as t goes from -oo to +oo. To determine whether ¢2 is decreasing or

increasing, consider its first derivative with respect to t. The derivative of

¢2(t) can be found implicitly from any of the three equations which define

its sine, cosine, or tangent. The details of this calculation are omitted. The

final result is

d¢2
- [-wm2t +(2m_-wl2)]2+ [wm3t +(2m,+w/3)] _ f#(t)

Note that t appears only in the denominator of the expression for d¢2/dt.

Therefore, as t _ -4-oo, d¢2/dt --* O. This is expected since ¢2(_) approaches

the constant value/91 as t _ -c¢ and the constant value j3_ as t ---* +c¢.
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In the cases under consideration, d_ _= 0 and the expression in the

denominator, F_(t), is always positive. Therefore, the sign of d# determines

the sign of d_2/dt. When d_, > 0, the first derivative of _b_ is always positive

and _b2(t) increases from _1 to _2. It is possible to choose the values of _1

and _ so that the curve of @_(t) is continuously increasing from _1 to

_2 = _1 + a-. When d_, < 0, the first derivative of @2 is always negative

and _b2(t) decreases from _1 to _. It is possible to choose the values of

81 and 82 so that the curve of _(t) is continuously decreasing from _1 to

_ = _1-_r. The choice of the values of 81 and 8_ for a continuous curve of

_(t) depends on the two coefficients rn2 and rn3 and the quantity d_. The

sixteen possible cases are presented in Appendix A.

Whether _2(t) is increasing or decreasing, its range of values is con-

strained to lie in the interval of length n" bounded by the values of 13: and

_2. All intersections of the curve @_(t) with the lines y(t) = -cat + k'Tr/2

must occur along the segments of these lines which lie between y(t) = _/1

and y(t) = _ = _1 + n'. These points divide the _t axis into intervals of

length _" as shown in Figure 5.3. When @2(t) is increasing, these intervals

are bounded by the points cat = -_1 - a" + k'Tr/2 and cat = -_: + k'Tr/2.

When _b2(t) is decreasing, these intervals are bounded by cat = -Sx + k'_r/2

and cat = -_I + _r + k'_r/2. Because _2(t) is a single-valued function

of t, its curve wiU pass through each of these intervals sequentially for

k' E {...,-3,-1, +I, +3,...}. That is, once the curve crosses into an in-

terval defined by a particular value of k' it is not possible for it to return

to an interval defined by a smaller value ofk'.

When _2(t) is increasing, its slope as measured by the value of its first

derivative always has opposite sign from the negative slope -ca of the lines

y(t) = -cat + k'_r/2. This means that one and only one intersection of

the curve of _(t) with the line y(t) = -cat + k'_r/2 occurs in each interval

[-_ - zr + k'rr/2, -8_ + k'_r/2]. The value d t where this intersection takes

place is the only zero of the second derivative d f(t) in that interval. This

is illustrated in Figure 5.4.

When _(t) is decreasing, its slope as measured by the value d its first

derivative always has the same sign as the negative slope -ca of the lines

y(t) = -cat + k'_r/2. It is possible for the curve of _z(t) to intersect one

of the lines more than once in an interval [-8_ + k'?r/2,-8_ + rr + k'?r/2].

Whether or not multiple intersections will actually occur depends on the

value of d_/dt relative to -ca. In particular, multiple intersections are
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possible only when d¢2/dt is less than or equal to -w for some interval of

t. From the equation for d¢2/dt given above, this is possible only when

< --OJ

+ 2+ + 2 -

Multiplying both sides by the denominator and bringing all terms to the

left of the inequality gives

Expanding the squared terms and combining terms of the same degree in t

resultsin

The quadratic on the left-hand side of this inequality represents a parabola

which curves upward because the coefficient of the t 2 term is positive.

Again, there are three possibilities depending on the discriminant of the

quadratic. The value of this discriminant is easily computed from the co-

efficients of the quadratic and an expression for it will not be given here.

The first possibility is that the value of the discriminant is less than

zero so that the quadratic has no real roots. In this case, the parabola lies

entirely above the zero axis and the value of the quadratic is always positive.

The inequality is never satisfied and -_ < d¢2/dt < 0 V t. The tangent to

the curve of ¢2(t) is then never parallel to the lines y(t) = -_t + k'Tr/2.

The second possibility is that the value of the discriminant equals zero

and the quadratic has one real root. This means the the parabola touches

the zero axis at one point and the value of the quadratic is positive for

all other values of t. The inequality is satisfied at the single root of the

quadratic and -¢# < d¢_/dt < 0 V t. The tangent to the curve of ¢2(t) is

parallel to the lines y(t) for the one value of t where -w = d¢2/dt.

In either of these cases, there can be one and only one intersection of the

curve of ¢2(t) with one of the lines y(t) in each interval [-_1 +k'vr/2,-_1 +

7r + k'zr/2]. These cases are illustrated in Figure 5.5.
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The last possibility is that the value of the discriminant is positive

and the quadratic has two real roots. The parabola then crosses the zero

axis at these two roots and the value of the quadratic is negative between

them. The inequality is satisfied in the interval bounded by the two roots

of the quadratic. Let rl < 7"2 denote the values of the two real roots

of the quadratic. Then, the tangent to the curve of ¢2(t) is parallel to

the lines y(t) at both rl and r2. Between rl and r_, the tangent to the

curve of ¢2(t) has a slope less than -w. In this case, the curve of ¢2(t)

may intersect one of the lines y(t) more than once in one of the intervals

[-_x + k'_/2, -_ + re -+-k're/2].

The locations of rl and r2 determine whether or not multiple inter-

sections will actually occur. If the curve of ¢_(t) is to intersect a line

y(t) more than once, then both wrl and car2 must lie in the same inter-

val [-_1 ÷ k're/2,-_l ÷ re ÷ k're/2]. That is, there must be one value

k_ E {...,-3,-1, +1, +3,...} for which

+ k'lre/2 < < < -Zl + re + k' re/2

However, this is not a sufficient condition to insure that multiple inter-

sections take place in that interval. The additional conditions which will

determine the number and location of the intersection points are derived

in the next paragraph.

If rl and r2 are both in the same interval, then there are three ways

by which the curve of ¢2(t) can" intersect the line y(t) more than once.

Let ¢_(rl) and ¢2(r2) be the values of the phase angle at the roots of the

quadratic rl and rz, respectively. When

¢_(r,) = Y(rl) = -_v_ +klre/2

¢2(_'_) < y(_) = -_2 + kire/2

there are two intersections of the curve of ¢2(t) with the line y(t). The first

of these occurs at t = rl where the tangent to the ¢2(t) curve is coincident

with the line y(t). The second occurs between ¢#'r2 and the end of the

interval -ill + re + le_re/2; Similarly, when

>
= = + k re/2

there are two intersections of the curve of ¢_(t) with the line y(t). The first

intersection point lies between the beginning of the interval -ill + k_re/2
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and wrl. The second intersection point is t = v2 where the tangent to the

¢2(t) curve is coincident with the line y(t). Now, when

there are three intersections of the curve of ¢_(t) with the line y(t). The first

intersection point falls between the beginning of the interval -31 + k'_r/2

and w'r:, the second intersection points falls between wrl and 00s'2, and

the third intersection point falls between w_'2 and the end of the interval

-31 + 7r + k'lTr/2. These three ways for multiple intersections to take place

are illustrated in Figure 5.6.

The two cases where vl and

intersections do not occur are

¢_(_1) <
¢5(_) <

and

r2 are both in the same interval but multiple

v(._) = -_,-1 + k'_./2
v(._) = -,_,.- + k'_./2

¢5(-,-1)> v(-,l) =-,_,-1+k'_,_/2
¢5(r5) > y('rs) = -wr2 + k'_Tr/2

There is only one intersection of the curve of ¢2(t) and the fine y(t) in the

interval [-31 +k':Tr/2,-31 +_r +k_,r/2] in these cases. The single intersection

point is located between ¢01-2 and the end of the interval -31 + 7r + k'llr/2

when ¢5(7"1) and ¢2(r_) lie below the line y(t). When ¢2(rl) and ¢_(r5)

lie above the llne y(t), the single intersection point is located between the

beginning of the interval -31 + k'l_r/2 and wrl. These two cases are shown

in Figure 5.7.

In summary, when d, < 0 and ¢5(t) is decreasing, it is possible for

two or three intersections to occur between the curve of ¢2(t) and a line

y(t) = -wt +k'dr/2 in one particular interval [-31 +k_'/2,-31 +_" +k_'/2].

The three conditions that determine if multiple intersections can occur and

that identify the interval where they will occur are:

1. The quadratic

has two real roots, rl and v2.
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¢2(t) intersects y(t) at wt =wrl and in the interval [wr2,-_l ÷ 7r ÷ k'_Tr/2].

_ __ _
\\ y_t)

¢_(_) intersects y(t) in the three intervals [-Zl ÷ k_'/2, w_:l], [w_'l,w_'__],

¢2(t) intersects y(t) in the interval [-Zl ÷ k_Tr/2,w'rl] and at wt -wv2.

Figure 5.6: The three possibilities for multiple intersections of ¢2(t) and

the line y(t) when d# < 0
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Figure 5.7: The two cases where multiple intersections do not occur when

rl and r2 lie in the same interval
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2. There is some odd integer k_ for which

+ k', 12,< < < + +

3. The values of ¢2(t) and y(t) at r_ and r_satisfy the inequalities

<_ y('r2) = -w'r + k,  r/2

If any of these three conditions is not satisfied, then there will be one and

only one intersection of the curve of ¢2(t) with the line y(t) - -wt ÷ k'Tr/2

in each interval [-_1 ÷k'_r/2,-Zl ÷_r +k'_'/2]. In other words, each interval

will contain a single zero of d2f/dt 2.

If the three conditions are all satisfied, then there will be either two or

three intersections of the curve ¢2(t) in the interval [-_1 ÷k_Tr/2,-t31 +rr +

k'_z¢/2] that contains w_'_ and wv2. The second derivative of f(t) then has
two or three zeros in this interval. When ¢2('rl) = y(vl), there are two zeros

of d2f/d_ 2 in this interval. The first zero is located at wt = wv_ and the

second zero lies in the subintehval [w_'_,-_l ÷ _" + k_Tr/2]. When ¢2(vl) >

y('rl) and ¢2(_'2) < y(v2), there are three zeros of d2f/dt 2 in this interval.

One zero is located in each of the subintervals [-fl_ ÷k_Tr/2,w'r_], [w_'l,wv2],

and [w_'2, -_ ÷_" +k_Tr/2]. Finally when ¢2(_'z) = y(r_), there are again two

zeros of d2f/dt 2 in this interval. The first zero is located in the subinterval

[-_ +k_zr/2, w-rl]. The second zero is located at wt = w_'_. There is a single

zero of d_f/dt _-in all the remaining intervals [-fl_ ÷k'_r/2,-_ +_r +k'_r/2]

where k' _= k_.

The preceding analysis has shown that in most cases there is a single

zero of d_f/d_ _ in each interval [-_3: - _r + k'_r/2,-_ + k'_r/2] or [-_1 +

k'_r/2,-_ + _r + k'_r 2] of wt. It is possible to divide each interval into

smaller parts, one of which must contain the zero of d_f/dt _. The rules for

finding the bounds on the part of an interval where the intersection point of

the curve of ¢_(t) and the line y(t) is located are presented in Appendix A.

These rules are generated using the values of t and ¢_(_) where cos ¢_(t) = 0

and sinCe(t) = 0. The new bounds depend on the values of m_, ma, and

d_ as shown in Appendix A.
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5.2.2.3 The Zero Search Procedure for Case 5

Recall the description of the zero search procedure for cases 6 and 7 of

class I presented in section 5.1.5.2. This search procedure worked with a

sequence of test points where a single zero of the function was guaranteed

to lie between two consecutive points if the function value had opposite

sign at those two points. The analysis in the previous section can be used

to generate such a sequence of test points when the function to be searched

for zeros is the second derivative of f(t). This suggests a three-stage zero

search procedure for finding the zeros of f(t) for these cases.

The first stage searches for zeros of the second derivative of f(t) within

the bounds of the overall search interval. This stage divides the overall

search interval into subintervals which contain no more than one zero of

d2f/dt 2. The secant method is used to iterate for the zero of d2f/dt 2 in each

subinterval. The resttlt of the first stage is an ordered sequence of points

consisting of the bounds of the search interval and those points within this

interval where the second derivative of f(t) is zero. This sequence is used

as input for the second stage of the zero search procedure.

The second stage searches for the points where the first derivative of f(t)

is zero. By definition, the zeros of dr�dr must lie at one of the points in the

input sequence or between two consecutive points in the sequence. In the

second stage, the values of df/dt are checked at each pair of consecutive

points in the input sequence. If the value of df/dt changes sign at two

consecutive points, the seacnt method is used to iterate for the zero of

df/dt which lies between them. The result of the second stage is an ordered

sequence of points consisting of the bounds of the overall search interval

and the points in the interval where either the first or second derivative

of f(t) is zero. This is the same sequence of points that was generated

analytically as input to the zero search procedure in cases 6 and 7 of class
I.

The third stage of the zero search procedure for case 5 of class /1 finds

the zeros of f(t) in the same manner as the procedure for cases 6 and 7 of

class I. The input test points are checked in pairs for changes in sign of

f(t). When a sign change occurs between two consecutive test points, the

secant method is used to iterate for the zero of f(t) between them.

The zero search for case 5 of class H can also be conducted on a periodic

basis. The intervals used to find the points where the second derivative is
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Figure 5.8: The new phase angle a

zero are of length 7r. Two of these intervals can be considered a single cycle

of wt + a. The new phase angle a plays the same role in this procedure

that the phase angle ¢! plays in the zero search procedure for cases 6 and

7 of class L The value of a is determined from the lower bounds of the

intervals used in the analysis of dZf/dt 2. The new phase angle a is defined

to be the lower bound of one of these intervals for a particular odd integer

As an example, consider the intervals shown in Figure 5.3. In this case,

_1 6 (0,_'/2) and f12 = _ + _" E (_',3_'/2). Choosing k_ = 1, the value of

a becomes j31 + _'/2. Figure 5.8 shows the intervals defined by the lines

y(t) and the angles t3_ and _3_ for two different axes. The original axis is

the wt axis where the intervals are [-_ - zr + k'Tr/2,-_ + kbr/2]. The

second axis is the wt + a axis. The intervals become [n'zr, (n' + 1)_'] where

n' is an integer• Clearly, two such intervals define an entire period of wt +a

and n' = 0 when wt = -a. The choice of k_, like the values of _1 and _32,

depends on the values of rn2, m_, and d_. This choice and the resulting

values of a are listed in Appendix A for the sixteen possible combinations
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of values of m_, ma, and d,.
There are several preliminary computations which must be made before

the first stage of the case 5 zero search procedure can begin. First, the

quantity d_ is computed. When d_ = 0, the new phase angle cx is taken to

be _,n as defined for the special case ofd2f/dt2. When d_ _ 0, the values of

;31, k_, and r_ are computed using the values of rr,2 and m3 according to the

sixteen possible cases listed in Appendix A. If d_ < 0, the three conditions

for multiple zeros of d_f/dt 2 to occur in one particular half-period of _t +cx

are checked sequentially as follows. The discriminant of the quadratic is

computed. If the value of the discriminant is nonpositive, then the first

condition is not satisfied. A flag is set which indicates that multiple zeros

do not occur. If the value of the discriminant is positive, then the values

of the two real roots of the quadratic, rl and _'2, are computed. Next, the

second condition is checked by finding the two intervals where

-_ + k'_12 < _r_ < -_ + 7r+ k' _rl2

and

-fil + k'_r/2 < z'r2 < -fl + 7r+ k'Tr/2

If the value of k' is not the same for these two intervals, then the second

condition is not satisfied. The flag which indicates that multiple inter-

sections do not occur is set. If the value of k' is the same for these two

intervals, then the se_:ond condition is satisfied and the third condition is

checked. The values of _b2(7"1) and ¢52(r2) are computed and compared to

the values of Y(_'I) and Y(_'2). If these values do not satisfy the inequalities

for the third condition, the flag that indicates that multiple intersections

do not occur is set. If these values do satisfy the inequalities for the third

condition, then the flag indicating that multiple intersections do occur is

set. In this case, an additional flag is set that distinguishes the three ways

for multiple intersections to occur.

Once the value of cx is known, the overall zero search interval is divided

into subintervals at the values of t which define separate cycles of _ + cx.

The bounds of each subinterval are usually the points where _ot +ct is equal

to consecutive multiples of 21r. The lower bound of a subinterval is replaced

by the lower bound of the search interval when the overall bound lies in

the period defined by that subinterval. Similarly, the upper bound of a

subinterval is replaced by the upper bound of the search interval when it
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lies in the period defined by that subinterval. When one (or both) of its
normal bounds is replaced by a bound of the overall searchinterval, the
subinterval becomesonly a partial cycle of wt + a.

The three stages of the zero search procedure are performed for each

subinterval within the overall search interval. The results of the preliminary

checks and the bounds on the location of the zeros of d_f/dt 2 are used only

in the first stage. A brief discussion of the first stage procedure for the

various cases of the behavior of d2f/dt 2 is presented below. The second.

and third stages are not influenced by the behavior of d2f/dt _ and are

executed as previously described for each subinterval once the first stage is

completed.

In order to simplify the discussion, assume for the moment that the

current subinterval defines an entire period of wt +a, [2n_', 2(n + 1)_r]. The

first stage of the zero search procedure further divides this subinterval at

the point which separates the half-cycles of wt +a. It considers those parts

of the subinterval where wt + a E [2n_', (2n + 1)_'] and where wt + c_ C

[(2n + 1)Tr, 2(n + 1)_r]. The first and final points in the sequence of points

to be used in the second stage are set equal to the beginning and end of

the current cycle, respectively. Zeros of d=f/dt 2 in this _:ycle are added to

the sequence in numerical order between these two points.

When d_ = 0, one zero of d2f/dt 2 is located in the first half-cycle at

wt + a = _'/2 + 2n_" and another is located in the second half-cycle at

wt ÷ a = 3_r/2 + 2n_" = _'/2 + (2n + 1)_r. The first stage need only add

these two points to the sequence to be used in the second stage. There is

another zero of d_f /dt _ at wt + a = wc2 + a. If wc2 + a falls within the

current cycle, then it is also placed in the sequence according to its value

relative to the other two zeros of d_f/dt 2. In this special case, no iteration

is necessary to find the zeros of the second derivative.

When d_ > 0 or when d_ < 0 and the preliminary checks indicate that

no multiple intersections occur, there can be only one zero of d2f/dt _ in

each half-cycle of wt + a. The first stage executes the secant method twice

to iterate for the zeros in each of the current two half-cycles. The starting

values for the iteration are found from the guidelines given in Appendix A.

The two zeros of d_f/dt 2 resulting from application of the secant method

are added to the input sequence for the second stage.

The first stage of the zero search procedure when d_ < 0 and when the

preliminary checks indicate that multiple intersections occur is identical
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to that described in the preceding paragraph except when one of the half-

cycles in the current subinterval is the one where mnltiple intersections take

place. The first stage compares the bounds of each half-cycle with the value

of ca'r1. If the value of carl is within one of the half-cycles, then multiple

intersections take place in this half-cycle. A flag set by the preliminary

checks determines how many times the secant method is executed and the

starting values it uses in this half-cycle. When this flag indicates that two

zeros of d_f/dt 2 are located in this half-cycle, then the secant method is

executed only once because one of the zeros is located at either ca'r1 or car2.

When the flag indicates that the half-cycle contains three zeros of d2f/dt _,
then the secant method is executed three times with three different sets of

starting values. The special guidellnes for the starting values in this half-

cycle were listed in section 5.2.2.2. In this case, there wiU be three or four

zeros of d2f/d_ 2 to be added to the input sequence for the second stage.

One half-cycle will contain only a single zero of d2f/d_ 2 and the other will

contain two or three zeros of el_f/d_ 2.

The first stage of the zero search must be modified somewhat when the

current subinterval is not a full period of cat -q-a. The entire first or second

half-cycle may not be included in the subinterval or the subinterval may

include only a part of the first or second half-cycles. However, even if part

of a half-cycle is within the current subinterval, the zero(s) of d2f/d_ 2 do

not necessarily lie in that part of the half-cycle. The first stage finds those

parts, if any, of the two half-cycles that lie within the subinterval. If part of

a half-cycle lies within the subinterval, then the search for zeros of d_f/dt 2

is restricted to that part. This is done by comparing the interval defined

by the starting guesses for the iteration given in Appendix A to the actual

part of the half-cycle within the current subinterval. If the interval defined

by the starting guesses is entirely contained within that part of the half-

cycle, then the zero of d2f/dt _- must be in that part. The secant method

is executed with the original starting values. If the interval defined by the

starting guesses overlaps only partially with the part of the half-cycle in

the current subinterval, the values of the second derivative at the ends of

the interval of overlap are checked. If these values have opposite sign, then

the zero of dZf/dt z is located within the current subinterval. The secant

method is executed to iterate for the zero of dZf/d_ 2 with the bounds of the

interval of overlap as starting values. If the value of the second derivative

does not change sign between the ends of the interval of overlap, then the
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zero of d2f/dt 2 is located in that part of the half-cycle which is outside

of the current subinterval. Any zeros of d2f/dt 2 that are found within a

subinterval that is a partial cycle of 0.,t + a are added to the input sequence

for the second stage of the zero search.

5.2.2.4 Cases 3 _ 4

For case 5, when ml _ 0 and I1 _: 0, the form of the second derivative of

f(t) is (alt + bl)cos@t)+ (a2t +bs) sin@t). The analysis of section 5.2.2.2

showed how to find intervals of _t that contain a single zero of this form

when al = -w2ms, bl = 2_ms-_Sls, as = -_Sms, and bs = -2_ms-_Sls.

Now suppose that rnl = 0 but 11 _: 0. Then the equation for df/dt becomes

= + (ms + cos(,ot)+ + (ms- ,ols)]sin(, t)
dt

This is of the form (a¢ + bl) cos(wt) + (a2t + b2) sin(wt) with al = wins,

bl = m2 + wls, a2 = -wrns, and bs = ms - wls. A similar analysis can be

performed to find the intervals that contain single zeros for dr�dr for this

case. Then, the zero search procedure can be reduced to two stages. The

first stage searches for the zeros of df/dt in the overall search interval. The

second stage uses the results of the first stage to search for the zeros for

f(t) itself in the overall search interval.

A further simplification is possible when both ml and ll are zero. Then

the function is of the form (a it +bl ) cos(wt) +(ast +bs) sin(wt) with a l = m2,

bl = Is, as = ms, and bs = Is and the intervals that contain a single zero

of f(t) can be identified analytically. The zero search procedure consists

of a single stage which iterates for the zeros of f(t) in the overall search

interval.

Because the case where ml = 11 = 0 potentially has the simplest zero

search procedure, it is referred to here as case 3. The case when ml = 0

but 11 _= 0 is called case 4. The analysis required for the simplification of

the zero search procedure, in these two cases is not included in this thesis.

Instead, the case 5 zero search procedure is used to find the zeros of f(t)

for cases 3 and 4. This simplified the programming required to implement

the zero search for these cases.
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5.2.3 Summary of Class H

The five class H cases for f(t) are summarized in Table 5.1. This table

gives the conditions that hold for each case as well as the special forms

of f(t) in this class. There are analytic formulas for finding the zero(s) of

f(t) for cases 1 and 2. Thereis only one zero of f(t) at t = -c for case 1.
For case 2, there are periodic zeros of f(t) whenever its shifted sinusoidal

component equals zero, in addition to a zero at t = -c.

The zeros of f(t) are found by a numerical search procedure in cases 3,

4, and 5. The search procedure creates a sequence of test points consisting

of the bounds of the search interval and any values of t within the interval

where the first or second derivative of f(t) equals zero. Unlike the procedure

for cases 6 and 7 of class I, the points where the first and second derivatives

are zero cannot be found analytically. However, it is possible to find those

intervals in the overall search interval that contain a single point where the

second derivative is zero. Therefore, the zero search procedure is divided

into three stages. The first stage finds the points in the search interval

where the second derivative is zero. The results of this stage are used in

the second stage to find the points.in the search interval where the first

derivative is zero. The third and final stage uses the results of the first two

stages to find the zeros of f(t) itself in the overall search interval. This

third stage is identical to the zero search procedure for cases 6 and 7 of

class I. In all three stages, the secant method is used to iterate for the

zeros of the function or its first two derivatives.
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The 5 Class //Cases

Case[ Distinguishing Conditions

1 3e E _ such that 11 - crnl, 12 = cm_, and Is = c'ms

m,/¢,',,_+-q, > 1
2 3 c E _ such that 11 = crnl, 12 = cm2, and Is = crns

3 /3 c E _ such that 11 = cml, 12 = cm2, and 13 = cm3

ml = I1 = 0

(f(t) is of the form (alt + bl) cos(wt) + (a2t + b2) sin(wt) )

4 /3 c E R such that ll = crnl, 12 = crn_, and Is = cms

ml = 0, 11 _: 0.

( 4�dr is ofthe form(,_,t+ b,)cos(,,,t)+ (,_t + b_)sin(,,,t))
5 /_ c E _ such that 11 = crnl, 12 = cm2, and Is = cms

ml _'0
( d2f/dt 2 is of the form (a_t + b_) cos(a_t) + (a2t +b_)sin(wt) )

Class II Forms of f(t)

Case(s) Forms of f(t)

1 & 2 f(t) =(t +c)(m_ +m2coslwt)+mssin _t))

3 f(t) =(m_t +12)cos(wt)+(mst +/s) sin(wt)

4 f(t) =l_+(m2t +l_)cos(wt)+(m3t +ls)sin(a_t)

5 f(t) = m_t +l_)+(m2t +Iz)cos(_t)+(mst +ls)sin(_t)

Table 5.2: The five cases for class //of the generalized C-function

188



Chapter 6

The Collision Detection Algorithm

The conceptual collision detection procedure introduced in Chapter 2 is

basically a search for the zeros of the C-functions. Techniques for bounding

the intervals of time that must be searched for these zeros were developed in

Chapters 3 and 4. Then, methods for locating the zeros of the C-functions

in these bounded search intervals were developed in Chapter 5. This chapter

describes the collision detection algorithm that has been implemented for

this thesis by combining the ideas introduced in these previous chapters.

This chapter first specifies the inputs required by the algorithm. These

inputs include the data modelling the shapes of .A and B and the quantities

used in the equations for the translational and rotational motion of A. Next,

the algorithm itself is discussed. Four major procedures are identified and

the hierarchy of the overall algorithm using these procedures is described.

Then, an example is given to illustrate a typical path through the hierarchy

of the algorithm. Finally, two special types of collisions are discussed where

numerical err'ors in the computer's calculations can cause problems for the

algorithm.

6.1 The Inputs

6.1.1 The Model for the Shapes of A and B

The first requirement of the collision detection algorithm is a model of the

shapes of the moving object .A and the obstacle B. For this thesis, A and B

are assumed to be polyhedra, either convex or nonconvex. A given object

can be represented to any desired degree of accuracy by adding more faces

to the polyhedron. Of course, the storage space and computation time

required by the collision detection algorithm increase with the complexity

of the polyhedron.

Several schemes for the representation of polyhedra have been developed

for computer graphics systems. Typical datastructures are described in

references [24,25] and Chapter 10 of reference [11]. Rather than implement
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oneof these datastructures, a simplified datastructure is used that contains

the minimum amount of information necessary for the collision detection

algorithm. No attempt is made to make this representation efficient. It

is assumed that the information entered in the datastructure describing ._

or B represents a physically realizable solid. The algorithm does not check

that these data are consistent with the actual shapes of the two polyhedra.

6.1.1.1 The Datastructure for a Convex Polyhedron

The datastructure used by the collision detection algorithm is a graph-

based model. The features of the polyhedron are the "nodes" of the graph.

The "branches" between these nodes describe the connections between the

features. The numerical information pertaining to each "node" is stored

separately from the connectivity information. See pages 431-433 of refer-

ence [11] for a more detailed discussion of graph-based models for polyhedra.

The numerical information for a convex polyhedron specifies the num-

ber, size, and location of its features. This includes the number of vertices,

edges, and faces of the polyhedron and the vectors representing each ver-

tex, edge, and face as defined in section 2.2.1. The algorithm also uses the

distance of each face from the origin of the appropriate coordinate system

as measured along its outward-pointing normal vector. These distances are

the quantities d_ and _ defined in sections 4.1.1 and 4.1.2. They can be"

precomputed using the vertex vectors and the face normal vectors.

The connectivity information for a polyhedron is concerned with the

topology of the polyhedron and not its size or location in space. The only

information of this kind needed by the collision detection algorithm gives

the connections between the vertices and edges and between the edges and

faces of the polyhedron. The algorithm requires the numbers of the edges

meeting at each vertex of the polyhedron, the numbers of the two faces

meeting at each edge of the polyhedron, and the number of the tall vertex

for each edge vector.

The connections between the edges and vertices and the edges and faces

of the polyhedron are stored in two connectivity matrices. The rows and

columns of a connectivity matrix represent the features of the polyhedron.

Its elements are binary. If the element in the ith row and jth column

of the matrix is 1, then the ith and jth feature are connected. If this

element is equal to 0, these two features are not connected. The vertex-
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edge connectivity matrix has row dimension equal to the number of vertices

of the polyhedron and column dimension equal to the number of edges of

the polyhedron. The cohmm numbers of the nonzero elements in row i

of this matrix are the numbers of the edges of the polyhedron that meet

at its ith vertex. There must be at least three nonzero elements in each

row of this matrix since at least three edges must meet at each vertex of

a polyhedron. The edge-face connectivity matrix has row dimension equal

to the number of edges of the polyhedron and column dimension equal to

the number of faces of the polyhedron. The column numbers of the two

nonzero elements in row i of this matrix are the numbers of the two faces

of the polyhedron that meet at its ith edge.

In summary, the numerical and connectivity data required by the colli-

sion detection algorithm for a convez polyhedron ? are:

1. The integer v_, representing the number of vertices of

2. The integer e_, representing the number of edges of

3. The integer f_, representing the number of faces of

4. The v_, position vectors for the vertices of

5. The e_, edge vectors of

6. The f_, unit, outward-pointing normal vectors for the faces of 7_

7. The f_, scalars specifying the distances of the faces of ? from the

origin of the appropriate coordinate system measured along the cor-

responding face normal vectors

8. The e_, integers specifying the numbers of the tail vertices of each

edge vector of

9. The v_, x e_, connectivity matrix for the vertices and edges of

10. The e_, x f_, connectivity matrix for the edges and faces of _

The collision detection algorithm makes use of the numerical informa-

tion for the features of the polyhedron to compute the constant coe_cients
of the C-functions and their ACFs as functions of time as well as to check

the physical constraints for each C-function. The information describing
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the topology of the polyhedron is used to determine the applicability in-

tervals of the C-functions. The vertex-edge connectivity matrix is used to

find the ACFs for the type (a) and (b) C-functions. Both the vertex-edge

and the edge-face connectivity matrices are needed to find the ACFs for

the type (c) C-functions. The number of the tail vertex of each edge vector

is used to determine the correct orientation of an edge vector when used in

an ACF. By definition, the ACF requires the edge vector to have a certain

tail vertex, ff the vector stored in the datastructure for that edge does not

have that vertex as its tail vertex, its direction must be reversed before it

is used to compute the coefficients of the ACF.

6.1.1.2 The Datastructures for A and/3

Because convexity is a key assumption for the applicability tests, the colli-

sion detection algorithm regards each object as the union of convex poly-

hedra. For this reason, the data.structures for .4 and /3 are divided into

substructures that describe their convex polyhedral components.

Recalling the notation of section 2.8, let S_ be the set of n,_ convez poly-

hedra .41, A2,..., A_ whose union is .4 and let Sb be the set of nb convez

polyhedra/31,/32,... ,B,,_ whose union is/3. The integers n,. and nb are the

first entries in the datastructures describing .4 and/3, respectively. The

radius r_ of the sphere enclosing .4 is part of the datastructure for A. The

radius rb of the sphere enclosing/3 and the position vector x b of its center

C b axe part of the datastructure for/3. These quantities can be precom-

puted from the vertex vectors of .4 and/3, as explained in section 4.3. The

remaining data for .4 are divided into n_ substructures describing the indi-

vidual convex polyhedra Az,.4_,...,.4_. Similarly, the remaining data for

/3 are divided into nb substructures describing each of the convex polyhe-

dra/3t,B2,...,/3,,_. Note that when A or/3 is a single convex polyhedron,

no = I or nb = 1 and there is only one substructure describing the single

convex polyhedron .4z - A or/31 - B.

The substructure for each convex polyhedron P E ,_ or Sb contains the

ten quantities listed in the preceding section. The vectors in t-his substruc-

ture for P E S_ are expressed in the body coordinates of A with origin at

C °, the center of rotation of A. When "P E Sb, the vectors are expressed in

reference coordinates.

In section 2.2.1, the vectors representing the ith vertex, edge, and face
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of .4 or/3 were denoted a_, e_, u_ or !_, _., _, respectively. Since .A and

B were assumed to be single convex polyhedra for that section, only one

subscript was needed to identify each vector. When A or B consist of more

than one convex polyhedron, the single subscript is not sufficient to identify

a particular feature. The number of the convex polyhedron on which _he

feature is located and the number of the feature are both required. In

order to avoid more cumbersome notation, a second subscript will not be

introduced. Instead, the relevant convex polyhedron will be specified in the

text. For example, the vector representing the fifth vertex of the second

convex polyhedron A_ E S, will be referred to as "as of A2."

6.1.2 The Model for the Motion of A

The second requirement for the collision detection algorithm is a model for

the motion of A relative to B. For this thesis, A is assumed to be moving

with constant linear and angular velocity relative to 8. The equations

describing the trajectory of A are then:

x(t) = +

where x(t) is the position of C +' in reference coordinates at time t and Q(t)

is the quaternion representing the orientation of the body coordinates of A

relative to the reference coordinate axes at time t. The quantities _ and

ub are computed from the constant angular velocity vector 5.

The three vectors xo, v, and _ and the quaternion Q+ must be specified

as input to the collision detection algorithm. If this algorithm were being

executed onboard a spacecraft, the quantities xo and Q_ would be available

from navigation software that uses sensor measurements to determine the

position and orientation of the spacecraft relative to some other vehicle.

The navigation routine would also provide estimates of v and 5, the linear

and angluar velocities relative to the other vehicle. These two vectors are

used to predict the trajectory of the moving spacecraft. The implementa-

tion of the algorithm for this thesis requires that the quantities x+, v, 5,

and Q+ be entered by the user prior to the start of the algorithm.

The initial configuration of .,4 is specified by x<, and Q_. The initial

position vector xo must be expressed in reference coordinates. The initial

orientation of the body coordinate axes of .2, with respect to the reference
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coordinate axes can be entered in any convenient format and converted to

the quaternion O_. For this thesis, the initial orientation of .A was specified

using yaw, pitch, and roll Euler angles. This corresponds to sequential

rotations about the Z,, Y_, and X, body axes, respectively, as explained in

section 3.1.1. .-

All of the information about the future motion of A is contained in

the two vectors v and J. The linear velocity vector v must be expressed

in reference coordinates. The angular velocity vector J may be expressed

in either reference coordinates or in the body coordinates of A. When

it is expressed in the body coordinates of A, the quaternion O,,, is used

to convert it to reference coordinates prior to the start of the collision

detection algorithm. This vector is unchanged by subsequent rotations of

A away from its initial orientation because constant angular velocity is

assumed.

6.2 The Algorithm

Four major procedures can be identified as parts of the overall collision

detection algorithm:

1. Static spherical approximation

2. Dynamic spherical approximation

3. Configuration space static collision detection

4. Configuration space dynamic collision detection

Each of these procedures has different inputs and is designed to answer

different questions related to the collision detection problem. These pro-
cedures are discussed in detail in the next three sections. Section 6.2.4

describes the hierarchy of the overall algorithm that results from uniting

these four procedures.

6.2.1 The Static and Dynamic Spherical Approxima-

tion Procedures

The static and dynamic spherical approximation procedures are closely

related. As the names imply, both of them make use of the approximation
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that .A.and 13 are spheres. The static procedure determines if the spheres

enclosing A and B are overlapping, just touching, or disjoint at the initial

position of .A when t = 0. The dynamic procedure determines the interval

of time, if any, when the spheres enclosing A and B overlap.

These two procedures determine the relationship of the spheres enclosing

.A and B by comparing the distance between the centers of the two spheres,

IIx- x*ll, to their combined radii, R = r, + rb. When IIx- xh[I> R, the

two spheres are disjoint. When [Ix- x ll ___R, the two spheres are either

just touching or overlapping.

The possible outcomes of the static and dynamic spherical approxima-

tion procedures are described below.

The Static Spherical Approximation Procedure This procedure is

the simplest of the four major procedures. It compares the magnitude of

the vector xo - _ to R. When 1[xo - > R, the procedure indicates that

the two spheres axe initially disjoint. When II - ,dll < R, the procedure

indicates that the two spheres are just touching or overlapping at t = 0.

The Dynamic Spherical Approximation Procedure The dynamic

spherical approximation was discussed in section 4.3. A test was derived

that determines the interval of time, if any, when the spheres enclosing .A

and 13 overlap along the trajectory of .A. There axe three possible results of

this test. The first possible result is that the spheres enclosing .A and 13 do

not come into contact at any point along the trajectory of A. In this case,

no collision can take place between .A and 13. The second possible result is

that the spheres enclosing A and B are just touching at one point t,, along

the trajectory of A. Therefore, t_ is the only time when a collision may

take place between A and B. The third possible result is that the spheres

enclosing A and B overlap for the finite interval [T1,T2]. Any collisions

between A and B must take place for values of t in this interval.

The dynamic spherical approximation procedure makes some additional

checks in the case of the second or third results for this test. These new

checks are required because the goal of the collision detection algorithm is

to predict the time of the first collision, if any, that will take place between

A and 13 after the intial time t = 0.

When the spheres are just touching at a single point t,,, the procedure

must check that t,, > 0. If t,, < 0, the procedure will indicate that the
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spheres do not overlap for _ _> 0.

When the spheres overlap for a finite interval [T1, T2], the procedure

must determine if any part of this interval lies on the positive half of the

axis. If T1 < T_ < 0, then the procedure indicates that the spheres

enclosing A and B do not overlap when g > 0, If T1 <( 0 but T2 > 0, then

the procedure sets T1 = 0. The values of T1 and T2 are retained without

change if T2 > T1 _> 0.

6.2.2 The Configuration Space Static Collision De-

' tection Procedure

The configuration space static coUision detection procedure uses the theory

presented in Chapter 2 to determine if A and/3 are just touching or over-

lapping or are disjoint at a fixed time v. This procedure is basically a check

of the third coUision condition given in section 2.3.3 at time r. Recall that

this third condition distinguishes those configurations of .4 that lie on or

inside of CO_ from those configurations of .A in free space.

This procedure makes a separate check of the third coUision condition

for each pair of convex polyhedra .Ai E ,.q, and Bj E Sb. First, a "coUision"

flag is initialized to indicate that .Ai and Bj are in contact at time v. It is

only necessary to find one applicable C-function whose value violates the

third collision condition to prove that this assumption of contact is false and

that ,2q and B i are not in contact. Hence, the procedure next examines each

C-function defined by the features of .A_ and Bj. The values of the ACFs for

each C-function at time v are computed. These values are used to determine

whether or not the function is applicable at time v. They also determine

the orientation of the C-function when it is applicable. If a C-function is

found to be applicable at time v, then its value at time v is computed.

If any applicable C-function has positive orientation and positive value or

has negative orientation and negative value, then the configuration of ,4 is

outside of CO_ . The "coUision" flag is then set to indicate that Ai and

Bj are not in contact at time v. Otherwise, the "collision" flag retains its

initial setting indicating that A_ and Bj are in contact at time r.

The vector x(r) and the quaternion Q(v) representing the configuration

of A at time -r are assumed to be available at the start of this procedure.

The values of the ACFs and the C-functions are computed directly. The

vectors representing features of j_ that appear in the ACFs and the C-

196



functions are transformed to reference coordinates from the body coordi-

nates of ._ using the quaternlon Q(r).

The configuration space static collision detection procedure finally checks

the "collision" flag for each combination of values for i and j. If the "colli-

sion" flag indicates that Ai and Bj are in contact at time _" for at least one

pair of values i -- 1,..., n= and j = 1,..., nb, then the procedure indicates

that A and B are in contact at time r. The procedure indicates that A and

B are not in contact at time r only if the "collision" flag shows that Ai and

Bj are not in contact for all values of i = 1,...,ha and j = 1,...,nb.

6.2.3 The Configuration Space Dynamic Collision De-
tection Procedure

The configuration space dynamic collision detection procedure determines

the time To, if any, where A and B first come into contact during a given

time interval where t > 0. As was the case for the static procedure, the

configuration space dynamic collision detection procedure considers each

pair of convex polyhedra .A_ E S_ and Bj E Sb separately.

This procedure searches for the first allowable zero of any C-function

that satisfies the third collision condition. First, the applicability and ori-

entation timelines for each of the C-functions defined by A_ and Bj are

computed and stored as discussed in Chapter 3. These timelines are used

to restrict the zero search for the C-functions and to simplify the check of

the third collision conditior_ at an allowable zero.

Once the applicability and orientation timelines have been found, the

procedure examines each of the C-functions individually. This is the most

complex part of the configuration space dynamic collision detection proce-

dure. The examination of a single C-function uses the information from

checks of applicability, from the physical constraint, and from the analytic

root interval(s) to determine if a search should be made to locate the allow-

able zeros of that C-function. If a zero search is performed and an allowable

zero for the C-function is found, the third collision condition is checked to

determine if that zero is a valid collision of A_ and Bj and, hence, of .A
and B. The interaction of the checks used to examine a C-function will be

described in detail in the next section.

Let IT1, T2] be the interval of time specified as input to this procedure

where T2 > T1 _> 0. When any valid collision is found between .A_ and Bj
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at time t _ in this interval, J and B must be in contact at time t _. The

goal of the procedure is to find the time of the firat contact between A and

B. Therefore, any valid collisions that take place after tl can be ignored.

The search for zeros of the C-function that is zero at tl can be terminated

and the search for zeros of the remaining C-functions can be confined to

the interval [Tl, t']. This includes the remaining C-functions defined by

the current pair of convex polyhedra A_ and Bj and all of the C-functions

defined by any remaining pairs of convex polyhedra. The procedure updates

the zero search interval by setting Tz equal to t _.

The order in which the C-functions for each pair of convex polyhedra

are examined is first type (b), then type (a), and finally type (c). This order

is chosen because the type (b) C-functions are all in class I and therefore

have a simpler zero search procedure than the type (a) and (c) C-functions.

If a val.id coLLision is found for any of the type (b) C-functions, the search

interval for the type (a) and (c) C-functions will be further restricted by this

collision as explained in the paragraph above. This means that the more

complicated zero search procedure for the type (a) and (c) C-functions in

calss Ilwill be executed over a smaller interval than would be the case if the

•type (a) or (c) C-functions were examined before the type (b) C-functions.

6.2.3.1 The Examination of a Single C-function

The examination of a particular C-function begins with the current search

interval ['1"1,7"2]. The upper bound of this interval, T2, may have been

modified from its initial value as input to the configuration space dynamic

collision detection procedure by previous examinations of other C-functions.

The first contact, if any, between A and B must take place in this interval.

This examination can be viewed as a two-stage process. In the first

stage, various checks are made to determine if there are any subintervals of

[T1,T_] that may contain zeros of the C-function that can represent valid

collisions. The purpose of these checks is to limit the zero search for the

C-function as much as possible because of the complexity of the numerical

zero search procedures. The checks are much simpler to implement than

these numerical procedures. As will be shown below, it is possible that no

zero search will be required for the C-function as a result of these checks.

If the checks in the first stage of the examination of the C-function do not

eliminate it from a zero search, then the examination moves into the second
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stagewhich is the execution of the appropriate zerosearch procedure.
The hierarchy of the checksperformed in examining a C-function is

described below. This hierarchy is summarizedin the flowchart shown in
Figure 6.1. The points labeled "EXIT" in the flowchart are points where
the examination of the current C-function is terminated and the procedure
begins the examination of the next C-function.

The first step in the examination of a C-function is a check of the ap-

plicability of that C-function. If the C-function is not applicable for any

portion of a cycle of cag, then no zeros of this C-function can be valid col-

lisions between A and B. No further checks are then necessary for this

C-function and the configuration space dynamic collision detection proce-

dure moves on to examine the next C-function.

If the C-function is applicable for one or more intervals in a cycle of

cat, then the procedure checks the physical constraint for the C-function. If

the physical constraint is not satisfied for the C-function, then no zeros of

this C-function can be valid collisions between A and/_ and the procedure

moves on to the next C-function.

Now consider the special case where the physical constraint is satisfied

at a single value of t, tp. In this case, tp is equal to t,, or t_ as defined in"

sections 4.4.1 and 4.4.3, respectively. First, the procedure checks to see

if t t, lies in the current zero search interval. If tp is not in the current

interval, then no zero of this C-function in the interval can be a valid

collision between A and/_. The procedure moves on to the next C-function.

If 7"1 < tp < T2, then this is the only value of t where the C-function may

have a zero that is a valid collision between A and B. The value of carp

modulo 2_" is checked to see if it lies in an applicability interval of the C-

function. If t1, is not in an interval where the C-function is applicable, then

there are no zeros of the C-function representing valid collisions between A

and/_. The procedure then begins the examination of the next C-function.

If the C-function is applicable at t_, then its value is computed at tp. If the

C-function equals zero at t_,, then the third collision condition is checked.

If this condition is not satisfied, then tp is not a valid collision between A

and B and the procedure moves on to the next C-function. If the third

collision condition is satisfied, then tp is a valid collision. The current time

of first contact, T_, is set equal to t t, and the search interval is updated by

setting T_ = tp. The procedure then moves on to the next C-function.

If the physical constraint is satisfied for some finite interval of time
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Figure 6.1: The flowchart for the examination of a single C-function
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Figure 6.1: (con't) The flowchart for the examination of a single C-function
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[ti,tf], then this interval is compared with the current zero search interval

[T1,T2]. If these two intervals do not overlap, then no zeros of the C-function

in the current search interval can be valid collisions of A and B and the

procedure moves on to the next C-function.

If these two intervals have only one endpoint in common, that is if

ts = T1 or ti = T_, then this common value of t is the only possible value
where a zero of the C-function can be a valid collision of A and B. The value

ofcatl or cat s modulo 27r is checked to see if it lies in an applicability interval

of the C-function. If ti or t f is not in an interval where the C-function is

applicabl.e, then there are no zeros of the C-function representing valid

collisions between ,4 and B. The procedure begins the examination of the

next C-function. If the C-function is applicable at t_ or t/, then the value

of the function itself is computed at tl or t/. If the value of the C-function

is not zero at t_ or t j, then the procedure moves on to the next C-function.

If its value is zero, then the third collision condition is checked. If this

condition is not satisfied, then tl or t! is not a valid collision between A

and/_ and the procedure moves on to the next C-function. If the third

collision condition is satisfied, then tl or t/ is a valid collision. The current

time of first contact, To, is set equal to tl or t s and the search interval is

updated by setting T_ = ti or tf. The procedure then moves on to the next

C-function.

If the intervals [7"1,T2] and Its, t_,] overlap at more than one point, then

the examination of the C-function can be restricted to the interval Its, t, ]

that includes all the points where these two intervals overlap. For the

special case where the physical constraint is always satisfied, the procedure

sets tb = 7"1 and t, = T2. In both of these cases, the physical constraint is

satisfied for tb < t < t, where 7"1 < tb < t, < T_. The next step in these

cases is to compute the six constant coefficients rnl, rn2, rn3, 11, l_, and 13

for the generalized form of the C-function as a function of t. The values of

these coeffcients are examined to determine to which class and to which

case within that class the C-function belongs.

If all of its coefficients are zero, then the C-function falls into case 1

of class I and can be ignored. The procedure then moves on to the next

C-function. If any coeffcients are nonzero, the analytic root intervals axe

determined according to the criteria in section 4.2. If the values of the

coefficients are such that there are no analytic root intervals for the C-

function, the procedure moves on to the next C-function. This will only

202



happen when the form of the C-function belongs to case 2 or 3 of class I.

If the analytic root interval is a single point t = td_ then this is the

only value of t where the C-function is zero. This can only happen for

C-functions having the form of case 5 of class I or case 1 of class /I. If td is

not in the interval [tb,t_], then there are no zeros of the C-function in this

interval and the procedure moves on to the next C-function. If tb <__ta <_ t_,

then this is the only zero of the C-function in this interval and it is checked

to see if it meets the two criteria for allowable zeros. First_ _2td modulo 2vr

is checked to see if it lies in an applicability interval of the C-function. If

not, then ta cannot be a valid coUlsion and the procedure moves on to the

next C-function. If ta is in an applicability interval of the C-function, its

orientation at td must be considered. When ml > 0, the C-function changes

from positive to negative at td. If the C-function has positive orientation at

td, then td is an allowable zero. When ral < 0, the C-function changes from

negative to positive at td and ta is an allowable zero if the C-function has

negative orientation at td. If td does not meet this second criterion for an

allowable zero, it cannot represent the first contact between J_ and Z3 and

the procedure moves on to the next C-function. If ta is an allowable zero,

the third collision condition is checked. If this condition is not satisfied

at td, then the procedure moves on to the next C-function. If the third

collision condition is satisfied_ then ta is a valid collision. The current time

of first contact_ Tc_ is set equal to td and the search interval is updated by

setting 7"2 = ta. The procedure then moves on to the next C-function.

When the C-function has the form of cases 4, 6, or 7 of class I or cases

2, 3, 4, or 5 of class H_ there are one or two analytic root intervals. These

intervals can be bounded or unbounded. The next step in these cases is

to merge the analytic root interval(s) with the bounded interval [tb,t,]. If

there are no values of t where the analytic root interval(s) overlap with the

interval [tb, te ], then the C-function cannot have any zeros in that interval

and the procedure moves on to the next C-function.

The analytic root intervals(s) for the C-function may overlap with the

interval [tb,te] at tb and/or te but not at any point between tb and t_. If

only one of these points is a point of overlap_ then the following steps are

taken. First, the value of a_tb or wt_ modulo 2vr is checked to see if it lies

in an applicability interval for the C-function. If not, then tb or t_ cannot

represent a valid collision between Jl and 13 and the procedure moves on

to the next C-function. If the C-function is applicable at tb or re, then its
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value is computed at tb or t,. ff the value of the C-function at ts or t,

is not zero, then the procedure moves on to the next C-function. ff the

C-function is zero at ts or t,, then the third collision condition is checked.

If this condition is not satisfied at tb or t,, then the procedure moves on to

the next C-function. If the third collision condition is satisfied at tb or t,,

then tb or t, is a valid collision. The current time of first contact, To, is set

equal to ts or t, and the search interval is updated by setting T_ = ts or

t_. The procedure then moves on to the next C-function. ff both ts and t,

must be checked, then the above steps are followed first for tb. If ts is found

to be a valid collision, then t, is not checked and the procedure moves on

to the next C-function. If tb is not found to be a valid coUision, then the

same steps are followed for t, before moving on to the next C-function.

If there are one or two finite intervals of overlap between the analytic

root interval(s) and the interval Its,t,], then the aUowable zeros of the C-

function in the(se) interval(s) of overlap must be found. By definition,

an allowable zero for the C-function must fie in an interval where the C-

function is appficable. Therefore, the zero search for the C-function can be

confined to all of the applicability intervals or parts of these intervals that

fall within an interval of overlap between the analytic root intervals and

the interval [tb,t_].

Let [Tb, T_] be (one of) the interval(s) of overlap between the analytic

root interval(s) and the interval [tb,t,]. Those appllcabifity intervals or

parts of such intervals that fall within the interval [Tb, T,] can be found

from the appficability timefine for the C-function. Now suppose [Y_l, T_ 2]

is such an interval entirely contained in (one of) the interval(s) ITs, T, ]. The

numerical zero search procedures for cases 6 and 7 of class I and for case 5

of class II described in Chapter 5 can be executed to find any zeros of the

C-function between T_I and T_2. Although analytic formulas exist for the

zeros of the C-function for case 4 of class I and for case 2 of class II, these

formulas are not used in the algorithm implemented for this thesis. The

zeros of the C-function for case 4 of class I are found using the zero search

procedure for cases 6 and 7 of class L Similarly, the zeros of the C-function

for case 2 of class H are found using the numerical search procedure for case

5 of class /I. The zeros of the C-function for cases 3 and 4 of class II are

also found by using the search procedure for case 5 of class H, as explained

in section 5.2.2.4.

Only a slight modification of these two numerical procedures is necessary
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to checkthe secondcriterion for allowablezeros. This secondcriterion for
allowable zerosstates that the value of the C-function must approach zero

from a region where its value is positive if it has positive orientation or

from a region where its value is negative if it has negative orientation.

The orientation of the C-function in an interval [T,.I, T,,2] is found from
the orientation timeline. In the case where a zero lies between two test

points, the search procedure need only distinguish between the cases where

the value of the C-function is positive at the first point and negative at

the second point and vice-versa. If the C-function has positive orientation

and the value of the C-function changes from positive to negative between

two consecutive test points, then there is a single allowable zero between

these two points. Similarly, if the C-function has negative orientation and

its value changes from negative to positive between two consecutive test

points, there is a single allowable zero of the C-function between them.

In either of these cases, the procedure uses the secant method to find the

allowable zero between the two test points. If the sign change occurs in

the opposite way from that described above, then the single zero of the C-

function between the two test points is not allowable and cannot represent

the first contact between A and B. In these cases, the procedure ignores

the sign change between the two test points and goes on to check the next

pair of test points.

There are two special cases for an allowable zero that are not covered by

the above modification. A C-function with positive orientation can have an

allowable zero at one of its relative minima and a C-function with negative
orientation can have an allowable zero at one of its relative maxima. For-

tunately, the relative maxima and minima of the C-function are included

in the test points for the zero search procedure. When the value of the

C-function is zero at one of the test points, the procedure checks to see if it

is a relative maximum or minimum of the C-function. If so, the orientation
of the C-function determines if it is an allowable zero.

When the numerical search procedure has found an allowable zero of

the C-function at_some time t', the third collision condition is checked at t'.

The set of applicable C-functions at t' is found by comparing the value of _t'

modulo 2_" with the applicability intervals stored in the applicability time-

lines of the C-functions. The values of all the other applicable C-functions

at t', besides the one that is zero, are computed and their orientations at t'

are determined from the orientation timellnes. If these values are such that
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the third collision condition is not satisfied, then the procedure continues

to search for allowable zeros of the current C-function. If the values of the

other applicable C-functions at t' are such that the third collision condition

is satisfied, then t' is a valid collision between A and B. The zero search

for the current C-function is terminated. The time of first contact, To, and

the upper bound of the search interval for the remaining C-functions, 7"2,

are set equal to t'. The procedure moves on to check the next C-function

using the updated search interval.

In summary, there are five conditions under which the numerical zero

search procedure need not be performed for a single C-function:

1. The C-function is never applicable for any value of wt. In this case,

any zeros of the C-function do not satisfy the second collision condi-

tion.

o The physical constraint for the C-function is not satisfied for any

value of t. In this case, any zeros of the C-function do not satisfy the

third collision condition.

1 There is no overlap between the current search interval [T1,T_] and

the interval [tl,t_,] where the physical constraint of the C-function is

satisfied. Any allowable zeros of the C-function in the interval [7-1,T_]

cannot satisfy the third collision condition.

4. There are no analytic root intervals for the C-function. In this case,

the form of the C-function is such that it has no zeros.

o The C-function has analytic root interval(s) but there is no overlap

between its analytic root interval(s) and the interval [ts,te] where the

search interval and the physical constraint interval overlap. The C-

function has no zeros in the interval [tb,te].

6.2.4 The Hierarchy of the Algorithm

The overall hierarchy of the collision detection algorithm is summarized in

the flowchart given in Figure 6.2. The flowchart shows interaction of the

four major procedures described in the preceding sections. This interaction

is discussed in greater detail below.
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Figure 6.2: The flowchart for the collision detection algorithm
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The first step in the collision detection algorithm is to check that the

initial configuration of A given by xo and Qo is located in free space. The

algorithm executes the static spherical approximation procedure. This de-

tern'fines the initial relationship of the spheres enclosing A and 13. There

are two possible outcomes of this procedure. If the static spherical approxi-

mation procedure indicates that the two spheres are either just touching or

overlapping at t = 0, no conclusion can be drawn regarding the location of

the initial configuration. Further tests are necessary to determine whether

or not it is in free space. The algorithm executes the configuration space

static collision detection procedure with v = 0.

There are two possible outcomes of the configuration space static colli-

sion detection procedure. If this procedure indicates that A and 13 are just

touching or overlapping at t = 0, then the algorithm prints a message that

the initial configuration is not in free space. If the procedure indicates that

A and /3 are disjoint at t = 0, then the initial configuration is located in

free space and the algorithm checks the linear and angular velocity vectors.

For the trivial case where both v and ¢_ are zero vectors and A is stationary

relative to/3, the algorithm prints a message that no collision can occur. If

v = 0 and J # O, then A is rotating but not translating.- The rotational

motion of A is periodic and the first contact between A and/3, if any, muat

occur between t - 0 and the end of the first cycle of rotation t = 2zr/ca. The

configuration space dynamic collision detection procedure is executed with

7"1 = 0 and 7"2 - 27r/w. If v # 0, then A is translating and the algorithm

executes the dynamic spherical approximation procedure.

If the static spherical approximation procedure indicates that the two

spheres are disjoint at t = 0, then the initial configuration rauat be in free

space. If A is not translating, that is if v = 0, then A cannot touch/3. The

algorithm prints a message that no collision can occur. If A is translating,

v # 0 and the algorithm executes the dynamic spherical approximation

procedure.

There are three possible outcomes of the dynamic spherical approxima-

tion procedure. If the procedure indicates that the spheres enclosing A

and/3 do not overlap for any t >_ 0, then no contact is possible between

A and /3. The algorithm prints a message that no collision can occur. If

the procedure indicates that the spheres are just touching at t_ > 0, then

contact between A and/3 is possible only at t_. The algorithm executes

the configuration space static collision detection procedure with v = t_. If
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the static procedure indicates that .A and B are in contact at t_, the algo-

rithm prints a message that the first contact between .A and B will occur

at t_. If the static procedure indicates that .A and B are not in contact

at t_, the algorithm prints a message that no collision will occur. If the

dynamic spherical approximation procedure indicates that the spheres en-

closing .A and B overlap for a finite interval [T1, T2] where T2 > T1 __ 0, then

the algorithm executes the configuration space dynamic collision detection

procedure with 7"1 = T1 and 7"2 = T2.

The interval [T_,T2] that is input to the configuration space dynamic

collision detection procedure is chosen such that the first collision, if any,

must occur at some time T1 __ _ __ T2. There are two possible outcomes

of this procedure. The first outcome is that no valid collision is found for

.A and B in the given interval [7"1,7"2]. In this case, the algorithm prints a

message that no collision will occur. The second outcome is that a valid

collision is found between .A and B. In this case, the algorithm prints the

resulting time of the first contact, T_.

6.3 An Example

The interaction of the various procedures used in the collision detection

algorithm will now be illustrated by an example. The moving object .A and

the obstacle B will be represented by the two rectangular boxes introduced

in section 3.3.1. Figure 3.8 shows the sizes and the numbering of the features
of these two boxes.

6.3.1 The Inputs

In this case, both .4. and B are single convex polyhedra so that no = 1 and

us = 1. The center of rotation of.A, C °, is located at the geometric center of

a rectangular box with dimensions l_, = 8, l_, = 6, and Iz = 24. Therefore,

the radius of the smallest sphere that completely encloses .A is ro = 13.

The origin of the reference coordinate system is located at the geometric

center of the rectangular box representing B. The dimensions of this box

are l_, = 32, l_ = 24, and Iz = 96. Following the procedure described in

section 4.3, the location of C b, the center of the sphere enclosing B, is found

to be xb = 0 and its radius is rb = 52. Because of the symmetry of the
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rectangular box, these values of vb and _ represent the exact solution for

the sphere of smallest radius that completely encloses B.

The datastructures for A and B have only one substructure for each

of the singie convex polyhedra representing A and B. Each box has eight

vertices, twelve edges, and six faces so that v._ = v8 = 8, e._ = es = 12, and

f._ = f8 = 6. Because A and B have the same shape and their features are

numbered in the same way, the connectivity information for each of these

objects is the same. The vertex-edge and edge-face connectivity matrices

and the tail vertices chosen for each edge vector are shown in Table 6.1.

The numerical data in the substructures for A and B are given in Tables 6.2

and 6.3.
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Edge #

Vertex-Edge Connectivity-Matrix
100100001000
110000000100
011000000001
001100000010
000010011000
000011000100
000001100001
000000110010

Edge-Face Connectivity Matrix

101000

001001

011000

-001010

100100

000101

010100

000110

100010

100001

010010

010001

Tail Vertices for Edge Vectors

1 2 3 4 5 6 7 8 9 10 11 12

Tail Vertex # 1 2 3 4 5 6 7 8 5 6 8 7

Table 6.1: The connectivity information for the rectangular boxes repre-

senting A and B
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Vertex vectors for A

al -- [-4 +3 +12 ]T a5 -- [--4--3 +12 ]T

a_ [--4 +3 12 ]T- a6 [-4 -3 -12 ]T

a3 = [ +4 +3 +12 ]r a7 =--[ +4 --3 --12 ]T

at -- [ +4 +3 +12 IT as ----[ +4 --3 +12 ]T

Edge vectors for .4

= [0 0 -24] T _ = [0 0 +24] T

= [+s 0 0] r _ = [-s 0 0] r
= [0 0 +24] r ¢9 -- [0 +6 01T

= [-s 0 0 IT do = [ 0 +6 0 ]r
= [0 0 -24] T _1 = [0 +6 0] T

= [+8 0 0] r _2 = [0 +6 0] T

Unit, outward-pointing normal vectors for faces of .A

u_l = [[-1 0 0 ]T t_4 = [[ 0 1 0 ]T+1 0 0 ]r u_ 0 o +1 ]r
u_ = [0 +1 0] r _ = [0 0 -1] r

Distances of faces from C _ along face normal vectors for A

_ = +4 d_ = +3

4 = +4 d_ = +12
4 = +3 d_ = +12

Table 6.2: The numerical data for the vertices, edges, and faces of .A

The initial position chosen for A is xo = [ 10 72 -25 iT. The initial

orientation of .A is such that its body coordinate axes are aligned with

the reference coordinate axes. The initial yaw, pitch, and roll angles are

all zero and the initial quaternion is simply the identity quaternion Qo =

[ 1 Or ]r. The linear velocity vector is chosen to point from xo to the

center of face 3 of 8 and the linear speed is set to 1 unit of length per unit

of time. The resulting value of v is

v = [ -0.15205718 -0.91234311 +0.38014296 IT

The rotation axis is the same as that chosen for the examples of section 3.3.1

and the angular speed is set equal to 55 degrees per unit of time. The value
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Vertex vectors for B

b_ = [-16 +12 +48 ]T bs = [-16-12 +48 ]T

b2 = [-16 +12 -48 ]r b6 = [-16 -12 -48 ]T

b3 = [ +16 +12 +48 ]r bT = [ +16 -12 -48 ]T

54 = [ +16 +12 +48 ]r b8 = [ +16 -12 +48 ]T

Edge vectors for B

= E0 0 -96] = E0 0 +96] 

0 0 +96 ]r _ 0 +24 0 IT

1--32 0 0] r _o [0 +24 0] T4 0 0 --06 ]r _1 0 +24 0 ]T

=" [+32 0 0] r _2 = [0 +24 0] T

Unit, outward-pointing normal vectors for faces of B

= [-1 0 o]T 4 = [0-1 0]T
= [+1 0 0]T 4 = [0 0 +lj

u_ = [0 +1 0]r 4 = [0 0-1]_
Distances of faces from origin of the reference coordinate

system along face normal vectors for B

4 = +16 _ = +12
4 = +16 4-- +48

4 = +12 4- +48

Table 6.3: The numerical data for the vertices, edges, and faces of B
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of_ is

-- (55°/t) [ -0.11547005 -0.57735027 +0.80829038 ]T

= [-6.3508528 -31.754265 44.455971 ]T(o/t )

The initial configuration of ,4 relative to B is shown in Figure 6.3. The

rotation axis and the direction of the velocity vector are also indicated in

this figure.

6.3.2 The Algorithm

The firststep in the collisiondetection algorithm is to execute the static

spherical approximation procedure. For this example, [[xo - xbll = IIxo[[ =

76.87 and R = 13 + 52 - 65. The spheres enclosing A and B are initially

disjoint because [Ixo- xbl] > R. This means that the initial configuration

is in free space. There is no need to execute the configuration space static

collision detection procedure at t = 0.

Now, Ilvll = 1 # 0. Therefore, the algorithm executes the dynamic

spheric .al approximation procedure. The result of this procedure is that the

spheres enclosing A and B overlap between Tz = 11.899 and T_ - 141.527.

This leads to execution of the configuration space dynamic collision detec-

tion procedure with Tz = Tz = 11.899 and Tz = T_ = 141.527.

The configuration space dynamic collision detection procedure examines

each of the C-functions defined by A and B. Since A and B are rectangular

boxes, there are f._,.vs -- 48 type (a) C-fUnctions, v_t. f8 = 48 type (b)

C-functions, and e,_. es = 144 type (c) C-functions, for a total of 240

C-functions. The applicability and orientation timelines for each of these

C-functions are computed and stored. Examples of finding these timelines

for each type of C-function were given in section 3.3.1.

The examination of the C-functions determines that the first contact

between ,4 and B is a type (b) contact when vertex 5 of ,4 touches face

3 of B at T_ = 54.496 . In other words, the zero of f_a that occurs at

T¢ = 54.496 is the smallest allowable zero found that represents a valid

collision between A and B. The configuration of A relative to B at the

time of first contact is shown in Figure 6.4.

The results of the examination of all 240 C-functions are summarized

in Table 6.4. This table shows the number of C-functions of each type

satisfying each of the five conditions listed at the end of section 6.2.3.1. For
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Figure 6.3: The initial configuration of .,4 and B
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T_ = 54.496
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Description Type (a) Type (b) Type (c)] Total

Initial # of C-functions 48 48 144 240

# of C-functions that are never ap- 22 22 56 100

plicable

# of C-functions not satisfying the 26 0 67 93

physical constraint for any value of
t

-- 10 21 31# of C-functions for which the

physical constraint is not satisfied

in the interval IT1, T2]

# of C-functions that cannot have

zeros for any value of t

!

0

## of C-functions that cannot have -- 2 m

zeros in the interval [tb, t_ ]

:# of C-functions having no allow- -- 12 --

able zeros in the interval [tb,t_]

2 --# of C-functions having allowable

zeros in the interval [tb, t_ ]

12

2

Table 6.4: Summary of the examination of the C-funcions
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this example, all but 14 of the original 240 C-functions are eliminated from

the numerical zero search due to one of these five conditions. Of the 14

C-functions for which the numerical zero search procedure was executed,

only 2 of them were found to have any allowable zeros. The type (b) C-

function f_s representing the first contact between .A, and B is one of these

two C-functions.

6.3.2.1 The Type (b) Zero Search

The type (b) C-functions are the first C-functions to be examined by the

configuration space dynamic collision detection procedure. The examina-
tion of four of these C-functions will be discussed below. Three of these

functions are chosen because they each satisfy one of the conditions under

which a numerical search for the allowable zeros of the C-function is un-

necessary. The fourth C-function is an example where no allowable zeros of

the function axe found even though the numerical zero search is executed.

It also iUustrates the interaction of all of the possible restrictions to the

zero search from applicability, the physical constraints, and the analytic

root intervals. In addition to these four type (b) C-functions, the two type

(b) C-functions having zeros representing valid collisions between A and B

are discussed. The next six sections present these type (b) C-functions in

the same order in which they are considered by the algorithm.

_,1 The arbitrary choice of numbers for the features of A and B causes

the type (b) C-function f_,l to be the first C-function examined by the algo-

rithm. This C-function is applicable in the interval cat E [198.370 , 269.23 ° ].

Since this is the first C-function to be examined, the current search in-

terval is the interval found by the dynamic spherical approximation pro-

cedure. Therefore, 7"1 = T1 = 11.899 and 7"2 = T2 = 141.527. The

physical constraint for this C-function is satisfied between ti = 85.49 and

t/ = 256.5. The physical constraint interval overlaps the search interval

between tb = tl = 85.49 and t, = T2 = 141.527.

The six coefficients for this C-function are such that it has the form of

case 7 of class I. The analytic root interval for f_l is bounded by t2 = 99.94

and tl = 229.2. This interval overlaps with the interval [tb, t,] between Tb =

t2 = 99.94 and T, = t, = 141.527. The numerical zero search procedure for

case 7 of class/is executed in the subintervals of [99.94, 141.527] where f_l
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is applicable. Figure 6.5 shows a plot of the C-function in this interval. The

subintervals where it is applicable are shaded with plus signs to indicate the

positive orientation of the C-function. It is clear from the plot that all of

the zeros of f_l occur outside of its applicability intervals. The numerical

search procedure does not fund any allowable zeros for this C-function.

_,4 The type (b) C-function f_4 is never applicable for any value of wt.

This is confirmed by the plots of the three ACFs for this C-function shown

in Figure 6.6. There is no value of wt where all three of the ACFs are

positive. Because f_4 is never applicable, any value of t where it is equal to

zero cannot represent a valid collision between .A and/3. It is not necessary

to perform a numerical search for the zeros of this C-function.

_,s The type (b) C-function f_,6 is applicable in the interval wt E [332.2 ° ,

360°]. The current search interval at the time of its examination is still

the interval found by the dynamic spherical approximation procedure so

that 7"1 = T1 = 11.899 and T_ = T2 = 141.527. The physical constraint for

this C-function is satisfied between ti = -94.7 and t! = -26.3. Figure 6.7

depicts the physical constraint region for this C-function and the sphere

of radius R centered at C b that represents the region where the spheres

enclosing .A and B overlap. The trajectory of C _ never passes through the

volume where the physical constraint region intersects this sphere. This

confirms the fact that the physical constraint interval does not overlap with

the search interval. Any zero of f_6 in the search interval cannot satisfy

the third collision condition and, hence, cannot represent a valid collision

between A and 13. The numerical zero search procedure is not executed.

_4 The type (b) C-function f_4 is applicable in the interval wt E [27.8 °,

120.0 ° ]. The current search interval at the time of its examination is still

the interval between T1 - T1 = 11.899 and T2 = Tz = 141.527. The physical

constraint for this C-function is satisfied between ti = 77.8 and t! = 106.3.

The physical constraint interval is entirely contained in the search interval

so that tb = t_ = 77.8 and t, = t! = 106.3.

The six coefficients for this C-function are such that its form is that of

case 7 of class/. The analytic root interval for f_4 is bounded by t2 = 94.9

and tl = 104.3. This interval is entirely contained in the interval between
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The volume representingthe physical constraint region for f_,s

Figure 6.7: The physical constraint region for f_,8
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tb and t,. Therefore, Tb = tz = 94.9 and T, = tt = 104.3. The numerical

zero search procedure for case 7 of class Iis executed in the subintervals of

[94.9, 104.3] where f_4 is applicable.

Figure 6.8 shows a plot of this type (b) C-function in the interval

[94.9, 104.3]. There ia only one subinterval where it is applicable. This

subinterval is shaded with plus signs to indicate the positive orientation of

the C-function. There is a single zero of f_4 in this subinterval. From the

plot, it can be seen that the value of the function changes from positive to

negative at this zero so that the zero is allowable. The numerical search

procedur e iterates to find that the zero is located at t' = 99.28. The value

of _t' modulo 360 ° is 60.4 ° , which verifies that f_4 is applicable at t'. The

third collision condition is satisfied at this zero of f_4" Thus, t' = 99.28 is
a valid collision between vertex 3 of A and face 4 of B. The time of first

contact, T_, is set equal to t' and the upper bound of the search interval for

the remaining C-functions becomes 7"2 = t' = 99.28.

It is clear from the trajectory of A, that the collision found for f_4

cannot be the true first contact between A and B. A must pass through

face 3 before it can touch face 4 of B. The zero at t' = 99.28 represents

a collision where A has emerged from inside of B and its third vertex has

rotated back to touch face 4 of B. In other words, the trajectory of the

configuration of A has emerged from inside of CO_s prior to t' and then

reversed direction to touch the boundary of CO D again from free space at

t' = 99.28. The algorithm finds this collision first due to the order in which

the C-functions are considered. The C-function f[3 having the zero that

represents the true first contact between A and B is examined after f_4.

i_a The type (b) C-function f[a is also applicable in the interval cat E

[27.8 °, 120.0 ° ]. The current search interval, updated using the valid collision

found for f_4, lies between Tt = T1 = 11.899 and T2 = 99.28. The physical

constraint for this C-function is satisfied between ti = 51.5 and t t = 80.0.

The physical constraint interval is entirely contained in the search interval

so that tb = tl = 51.5 and t, = tf = 80.0.

The values of the six coeft:icents for this C-function are such that it has

the form of case 7 of class I. The analytic root interval for f[3 is bounded

by t2 = 53.5 and tt = 62.9. This interval is entirely contained in the

interval between tb and t_. Therefore, Yb = t_ = 53.5 and T_ = tt = 62.9.

The numerical zero search procedure for case 7 of class Iis executed in the
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subintervals of [53.5, 62.9] where f[_ is applicable.

Figure 6.9 shows a plot of this type (b) C-function in the interval

[53.5, 62.9]. There are two subintervals where f[3 is applicable. These

subintervals are shaded with plus signs to indicate the positive orientation

of the C-function. There is a single zero of f_3 in the first subinterval. From

the plot, it can be seen that the value of the function changes from positive

to negative at this zero so that the zero is allowable. The numerical search

procedure iterates to find that the zero is located at t' = 54.496. The value

of wt' modulo 360 ° is 117.28 ° which lles in the applicability interval of f[_

as expected. The third collision condition is satisfied at this zero of f_3.
Thus, t' = 54.496 is a valid collision between vertex 5 of .A and face 3 of

B. The numerical zero search procedure for f[3 is terminated at this point.
There is no need to search for zeros in the second subinterval where the

C-function is applicable, although the plot shows that there is an allowable

zero in this subinterval. The time of first contact, To, is set equal to 54.496

and the upper bound of the search interval for the remaining C-functions

becomes T2 = t' = 54.496.

It has already been stated that the zero at t' = 54.496 represents the

first contact between A and B. However, the algorithm must continue to

check the remaining type (b) C-functions and all of the type (a) and (c)

C-functions after it has found this zero of f[_ to be a valid collision. It

is possible that one of these C-functions may have a zero between T1 and
t j = 54.496 that is also a valid collision between ,4 and B. An examination

of the remaining C-functions for this particular example does not yield any

other zeros representing valid collisions before t' = 54.496.

_a The type (b) C-function f_a is applicable in the interval wt E [0 °, 27.8°].

The current search interval, updated using the valid collision found for fin,

lies between 7"1 = T1 = 11.899 and Ta = 54.496. The physical constraint for

this C-function is satisfied between ti = 51.5 and g! = 80.0. The physical

constraint interval overlaps with the search interval between tb = ti = 51.5

and t_ = 7"2 = 54.496.

The six coefficients for this C-function are such that it fails into case 7

of class I. The analytic root interval for f_3 is bounded by t2 = 61.0 and

tt = 80.0. For this C-function, the analytic root interval does not overlap

with the interval [tb,t_] and f_3 cannot have any zeros in that interval.

Figure 6.10 shows a plot of this type (b) C-function between t = 50 and
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Figure 6.9: The type (b) C-function I_ in the interval [53.5, 62.9]
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t = 80. The subintervals where the C-function is applicable are shaded

with plus signs to indicate the positive orientation of the C-function. This

plot confirms that the zeros of f_3 are confined to the interval [61.0, 80.0].

Since a valid collision has already been found at t' - 54.496, none of the

zeros of f_3 can represent the first contact between .4 and B. There is no

need to perform the numerical zero search.

6.3.2.2 The Type (a) and (c) Zero Searches

For this example, the numerical zero search procedure is not executed for

any of the type (a) or type (c) C-functions. The physical constraints are

never satisfied for any of the type (a) C-functions, whether or not they are

applicable for some value(s) of cat. This is due to the relative sizes of A

and B and the trajectory chosen for A. Because of the symmetry of A,

the physical constraint regions for the type (a) C-functions are the eight

spheres of radius 13 centered at each of the vertices of//. The trajectory

of A is such that its center of rotation never passes through any of these

spheres. This is iUustrated in Figure 6.11. For this trajectory, none of the

zeros of any type (a) C-function can satisfy the third collision condition.

Most of the type (c) C-functions that are applicable for some interval of

cat do not satisfy their physical constraint. The physical constraint regions

for the type (c) C-functions are tubes of radius 13 with axes along the lines

containing the twelve edges of B. The trajectory of A is such that C _' oniy

passes through the tubes around edges 5, 9, and 12 of B. Only the type (c)

C-functions involving these three edges can satisfy the physical constraint.

However, for these C-functions, the interval where the physical constraint

is satisfied does not overlap with the current search interval.

Figure 6.12 shows the type (c) physical constraint regions around edges 9

and 12 of B. This figure shows that C _ is never located in the volumes where

the tubes around edges 9 and 12 and the sphere of radius R centered at C b

intersect. Thus, none of the zeros of the type (c) C-functions involving edges

9 and 12 of/_ between T1 and T_ can satisfy the third collision condition.

Since the current search interval always lles entirely between T1 and T2,

none of the zeros of these C-functions in the current search interval can

satisfy the third collision condition.

The type (c) physical constraint region around edge 5 of _ is shown

in Figure 6.13. The center of rotation of A, C "_, passes through the tube
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Figure 6.10: The type (b) C-function f[a in the interval [50.0, S0.0]
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Q The spheres representing the physical constraint regions for thetype (a) C-functions

Figure 6.11: The physical constraint regions for the type (a) C-functions
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The tube representing the physical constraint region for the

type (c) C-functions involving edge 9 of B

The tube representing the physical constraint region for the

type (c) C-functions involving edge 12 of B

Figure 6.12: The physical constraint regions for the type (c) C-functions

involving edges 9 and 12 of/_
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Figure 6.13: The physical constraint region for the type (c) C-functions
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around edge 5 of B inside the interval where the spheres enclosing .A and/3

overlap, but this interval is no longer the current search interval. The new

search interval has been updated to reflect the type (b) collision found for

f_3. The interval where C'" lies inside the tube around edge 5 of B occurs

after this collision between A and B. Any zeros of the type (c) C-functions

involving edge 5 of/3 that may satisfy the third collision condition occur in
an interval after the first contact between A and 8.

6.4 Limitations of the Algorithm Due to Nu-

merical Inaccuracies

For the example presented in the previous section, no problems were en-

countered in the execution of the collision detection algorithm due to limi-

tations on the accuracy of the computer's calculations. However, there are

two special types of collisions where numerical errors can potentially cause

a problem. This section discusses the reasons for the problems encountered

in these two special cases.

Because the computer cannot perform its computations exactly, the

algorithm incorporates a tolerance on the values that it treats as zero. This

tolerance was set to 10 -6 for the single precision calculations performed by

the version of the algorithm implemented for this thesis. Values of the C-

functions or ACFs whose absolute values were less than this tolerance were

considered to be zero by the collision detection algorithm. The tolerance is

also used to test the convergence of the iteration for a zero of a C-function

using the secant method.

The first type of collision where the choice of the tolerance for the zero

value may cause problems occurs when more than one C-function is zero at

the time of first contact. Examples of this type of collision are a face of the

moving object touching a face of the obstacle or an edge of either polyhedron

touching a face of the other polyhedron. In these cases, the algorithm will

find the time of first contact as a zero of several of the C-functions. It will

then check the third collision condition by computing the values of the other

applicable C-functions at the computed value for the zero when it examines

each of these C-functions. A small error in the computed value of the zero

for one of the C-functions that equals zero at first contact can cause the

values of the other C-functions to have small, but nonzero, values when

232



computed by the algorithm. That is, the values of the other C-functions

that are exactly equal to zero at the time of first contact may have absolute

value greater than the tolerance because of accumulated numerical errors in

the computer's calculations. This can cause the algorithm to conclude that

the third collision condition is not satisfied and, hence, that the computed

zero of one of these C-functions does not represent a true collision.

The inaccuracies in checking the third collision condition when there

are multiple C-functlons that are zero at the time of first contact will not

necessarily cause the algorithm to "miss" that collision. The algorithm will

only miss the collision if the numerical errors are such that it concludes that

the third collision condition is not satisfied at the computed values of the

zero for all of these C-functions. This is unlikely because different errors will

be made in the calculation of the zero for each of these C-functions. If any

one of the computed values is slightly larger than the true value of the zero,

then the values of the other C-functions at this time will probably be such

that the third collision condition is satisfied. This is because values of time

slightly larger than the true time of first contact represent configurations

that are inside of the configuration space obstacle.

The second case of a collision where numerical "problems can arise is

when the zero that represents the first contact is a relative maximum or

minimum of one of the C-functions. This corresponds to a "glancing blow"

contact where some feature of the moving object just touches a feature

of the obstacle at a single point and then moves away from the obstacle.

Again, small errors in the calculation of the points where the first derivative

of the C-function is zero can cause the computer to find a value of the

C-function at its relative maximum or minimum that is outside of the

tolerance on the zero value. The algorithm will conclude that tMs point is

not a zero of the C-function and will fail to recognize it as a collision. (Of

course, it is also possible that the value of the C-function really is small

but nonzero at its relative maximum or minimum. In this case, the relative

maximum or minimum represents a near miss and not a true collision of

the two polyhedra.)
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Chapter 7

Examples

The first three sections of this chapter give the results of applying the

collision detection algorithm described in Chapter 6 to several example

cases. Each of these sections presents three examples of collisions for a

different combination of moving object and obstacle. The three examples

illustrate .a type (a), a type (b), and a type (c) contact at collision for each

combination. The moving object and the obstacle are both represented by

single convex polyhedra for the examples presented in the first two sections.

For the examples in the third section, the moving object and obstacle are

both represented by nonconvex polyhedra resulting from the union of two

nonoverlapping convex polyhedra.

The first three sections are organized in a similax manner. 1 First, the

shapes of the moving object A and the obstacle B are described. A figure

is given showing the polyhedra representing A and /_. The dimensions

of the polyhedra and the numbering of" their features are also indicated

in this figure. The radius, r_, of the sphere enclosing ,4 along with the

location of the center, xb, and the radius, rs, of the sphere enclosing /_

axe specified. These three quantities have been computed following the

procedure described in section 4.3.

Next, the quantities describing the initial configuration and the motion

of A are listed in a table. This includes the initial position vector xo, the

linear velocity vector v, and the angular velocity vector _. All three of

these vectors axe expressed in reference coordinates. The initial orientation

of A is specified as a set of yaw, pitch, and roll _Lngles.

The four quantities [[xo- xbl[, Ilvll, = II_ll, and    /llvtl are also

given in this table. The first of these quantities, IIxo- xbll, measures the

initial distance between the centers of the spheres enclosing A and/_. It

is used by the static spherical approximation procedure to determine if the

initial configuration lies in free space. For all of the examples l_resented in

the first three sections, the value of [Ixo - xbll is greater than R = r_ + rs.

1The author apologizes for the repetitive nature of the first three sections caused by

the similar presentation.
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Therefore, the intial configurations are all in free space.

The magnitudes of v and _ are then used to compute r..¢,,/I [vii. The

v ue of ro, /ll vii is a comparison of the rates of translation and rotation.

When r,w/[Ivt[ is large, the angular speed is high compared to the linear

speed. In this case, the C-functions will typically be more oscillatory in the

interval of interest. They can have several relative maxima and minima and

consequently may have many zeros. The zero search is more complicated

for these cases. Conversely, when _o_/llvll is sm_l, the angular speed is low

compared to the linear speed. The C-functions do not change as rapidly in

the interval of interest. Many of the C-functions will have only a single zero

in the search interval. In these cases, the zero search procedure is relatively

simple.

The table is followed by discussions of the examples of a type (a), a

type (b), and a type (c) contact at collision, respectively. The initial con-

figuration of A relative to B and the directions of the velocity vector and

the rotation axis are briefly described in the text. This description is aug-

mented by a figure that shows the initial configuration of A and B. The

directions of the velocity vector and the rotation axis are also indicated in

this figure. Then, the time of first contact, T_, predicted by the collision

detection algorithm is given and the features of A and B that touch at T_

are specified. The number of the cycle of _t that includes _T_ is given

along with the value of ¢aTc modulo 360 °. This gives some idea of the rel-

ative change in orientation compared to the change in position that has

occurred before the collision. Finally, a figure is included that shows the

approximate configuration of A and B at To.

For the examples in the first three sections, the type of contact expected

to occur at collision can be predicted from the choice of the initial config-

uration and the direction of the linear and angular velocity vectors. The

fourth section of this chapter gives three examples of "unexpected" con-

tacts at collision, one for each of the combinations of moving object and

obstacle used in the first three sections. For these examples, the actual

type of contact at collision predicted by the algorithm is not the contact

that might be expected based on the initial configuration and the direc-

tion of the linear and angular velocity vectors. The quantities describing

the initial configuration and the motion of .A for these examples are listed

in tables similar to the tables for the examples in the first three sections.

The expected contacts and the type and time of first contact, T_ predicted
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by the collision detection algorithm are briefly discussed for each example.

Figures are included showing the initial configuration of A and/3 and their

approximate configuration at the time of first contact.

The fifth and final section of this chapter gives a comparison of the time

required to execute the final algorithm with the time required to execute

a similar algorithm having a simpler zero search procedure. Three sets of

examples for different moving objects and obstacles are discussed. Some

aspects of the collision detection problem that influence the execution time

for the algorithm are identified.

7.1 Rectangular Box Examples

For the cases presented in this section, -4 and /3 are represented by the

two rectangular boxes introduced in section 3.3.1. These same boxes were

used for the detailed example presented in the last section of Chapter 6.

The sizes and numbering of the features for these two boxes are shown in

Figure 3.8. The rectangular box representing the obstacle/3 is much larger

than the box representing the moving object A. The location of C b, the

center of the sphere enclosing/3, is x2 = 0 and its radius is rb = 52. The

radius of the sphere enclosing A is re. = 13.

Table 7.1 lists the information for the initial configuration and motion

of A for the three rectangular box examples.

Example of a Type (a) Contact at Collision For the first example,

the initial position of .4 is such that it is located above and behind B as

shown in Figure 7.1. The initial orientation of.4 is such that its body axes

are parallel to the reference coordinate axes. The directions of the velocity

vector and the rotation axis for this example are also shown in Figure 7.1.

The velocity vector is directed toward vertex 1 of/3. This vertex is the

vertex of/3 closest to .4 at the initial configuration. The rotation axis

passes through faces 3 and 4 of A and points into the -X_, -Y_, -+-Za

octant of the body coordinate system for .4.

The collision detection algorithm predicts that the first contact between

.4 and B will take place at Tc = 45.67. This value of To occurs in the seventh

cycle of cat when coTe modulo 360 ° is 351.85 ° . The collision at Tc represents

a type (a) contact between face 2 of .4 and vertex 1 of/3. The approximate
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Initial Position of C"

Contact at Collision '::co

Type (a) [-32 +25 +100 ]T

Type (b) +10 +72 -25 IT

Type (c) [ +50 -37.5 -30 ]T

(Constant) Linear Velocity Vector of .A

Contact at Collision v

Type (a) [ +0.28603370 -0.23240238 -0.92960952 ]r

Type (b) [ -0.15205718 -0.91234311 +0.38014296 IT

Type (c) [ -0.65357429 +0.49018072 +0.57668320 IT

Initial Orientation of .A

Contact at Collision Yaw (°) Pitch (°) Roll (°)

Type (a) 0 0 0

Type (b) 0 0 0

Type (c) -36.869898 0 0

(Constant) Angular Velocity Vector of A

Contact at Collision J(°/t)

Type (a) [-6.3508528 -31.754265 +44.455971 ]r

Type (b) [ -6.3508528 -31.754265 +44.455971 ]r

Type (c) [ +30 +40 0 ]T

Contact at Collision

Type (a

Type (b)

Type (c)

112- xbllI IlvtlI = It,ll(°/t)
107.93 I 55

76.87 1 55

69.33 1 50

_.,. /IIvtl

12.48

12.48

11.34

Table 7.1: The inputs for the rectangular box examples
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Figure 7.1: The initial configuration of the boxes for the type (a) contact

example
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Figure 7.2: The configuration of the boxes at the time of the type (a)
contact

configuration of ,4 and B at Tc = 45.67 is show,,- in Fig-are 7.2.

Example of a Type (b) Contact at Collision The second example for

the two rectangular boxes is the example discussed in detail in section 6.3.

The initial configuration of ,4 and 13 for this example is shown in Figure 6.3.

Recall that the collision detection algorithm predicts the time of the first

contact between .4 and 13 to be Tc = 54.496. At this time, a type (b)

contact occurs between vertex 5 of .4 and face 3 of/3. The value of Tc lies

in the eighth cycle of cat when the value of caTc modulo 360 ° is 117.28 ° .

Figure 6.4 iUustrates the configuration of .4 and B at T,.

Example of a Type (c) Contact at Collision Figure 7.3 shows the

initial configuration of the two boxes for the third example. The initial

position of .4 is such that C ° lies in the plane passing through edges 1 and
7 of B. The initial orientation of .4 is such that faces 1 and 2 of -4 are

perpendicular to the plane passing through edges 1 and 7 of 8, while faces

3 and 4 of .4 are parallel to this plane. This is most easily seen in the

view of the initial configuration of .4 and B in the X-Y plane shown in
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Figure 7.3: The initial configuration of the boxes for the type (c) contact

example
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Figure 7.4: The configuration of the boxes at the time of the type (c)

contact

Figure 7.3.

As is indicated in Figure 7.3, the velocity vector is directed toward the

I:nidpoint of edge 7 of 13. This edge is the edge of 13 closest to A at the initial

configuration. The axis of rotation is chosen to coincide with the +Y= axis

so that the rotational motion of A is pure pitch. For this trajectory of A,

the first contact is expected to occur when one of edges 9, 10, 11, or 12 of

A touches edge 7 of/3.

The collision detection algorithm predicts that the first contact between

A and 13 wiU take place at Tc = 37.117. At this time, edge 10 of A touches

edge 7 of 13, a type (c) contact. The time of first contact occurs in the fifth

cycle of wt when the value of wTc modulo 360 ° is 55.85 °. The approximate

configuration of A and/3 at the time of collision is shown in Figure 7.4.

7.2 Octahedron and Pyramid Examples

The polyhedra representing ,4 and 13 in the last section were of the same

rectangular shape but had different sizes. For the examples presented in this

section, A and/3 axe represented by two convex polyhedra having different
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shapesas well asdifferent sizes.The moving object "4 is representedby an
octahedronwhile the obstacleB is represented by a pyramid. The sizes and

numbering of the features for the octahedron and the pyramid are shown

in Figure 7.5. The center of rotation of A is located at the geometric center

of the octahedron. The radius of the sphere enclosing this octahedron is

r_ = 5. The origin of the reference coordinate system is located in the

center of the base of the pyramid. The location of the center of the sphere

enclosing B is _=[ 0 0 5IT and its radius isrb =11.18.

The inputs describing the initial configuration and the motion of "4 for

the three examples are listed in Table 7.2.

Example of a Type (a) Contact at Collision "4 is initially located

below and to the right of B for this example. The initial orientation of .,4

is such that its body axes are parallel to the reference axes. The velocity

vector is directed toward a point shghtly in front of vertex 3 of B. This

vertex is the vertex of B closest to .,4 at t = 0. The rotation axis points

into the -X,,, -Y,, +Z, octant and pierces faces 3 and 5 of .,4. The initial

configuration of .4 relative to B along with the velocity vector and the

rotation axis chosen for this example are shown in Figure 7.6.

The collision detection algorithm predicts that the first contact between

"4 and B will take place a.t T_ = 64.60. At this time, face 4 of .,4 touches

vertex 3 of B, a type (a) contact. The value of _T¢ modulo 360 ° is 313.00 °

and the actual value of _T_ is contained in the ninth cycle of _t. The

approximate configuration of "4 and B at the time of collision is shown in

Figure 7.7.

Example of a Type (b) Contact at Collision For this second exam-

ple, "4 is initially located almost directly below the base of the pyramid

representing B, as shown in Figure 7.8. The center of rotation of A initially

lles in the +X, +Y, -Z octant of the reference coordinate system, but the

magnitudes of the X and Y components of x, are small compared to the

magnitude of its Z component. The velocity vector is directed toward the

center of face 5 of B, which is the origin of the reference coordinate system.

The initial orientation of .4 is such that the X_ axis is parallel to the X

axis while the Y_ and Z_ axes are rotated 30 ° from the Y and Z axes. The

rotation axis passes through faces 1 and 7 of ,4, pointing into the +X_,
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Figure 7.5: The octahedron representing .4 and the pyramid representing
B
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Initial Position of C a

Contact at Collision . x_
m

Type (a) [ +I0 +72 -25 ]T

Type (b) +5 +3 -40 ]T

Type (c) [ +30 +40 -20 ]T

(Constant) Linear Velocity Vector of A

Contact at Collision I v

Type (a) [ -0.15205718 -0.91234311 +0.38014296 ]T

Type (b) [ -0.61846337 -0.37107802 +4.9477070 IT

Type (C) [ -2.785430 -3.7139068 +1.8569534 ]T

Initial Orientation of .A

Contact at Collision Yaw (°) Pitch (°) Roll (°)

Type (a) 0 0 0

Type (b) 0 0 30

Type (c) 0 0 30

(Constant) Angular Velocity Vector of A

Contact at Collision _(°/t)

Type (a) [-6.3508528 "31.754265 +44.455971 ]T

Type (b) [+0.81649658 +1.00597 +1.52360 ]T

Type (c) [ +0.81649658 +1.00597 +1.52360 IT

Contact at Collision

Type (a)

Type (b)

Type (c)

II -  'll I llvll I = II II(°/t)
78.64 1 55

45.38 5 2

55.90 5 2

4.80

0.0349

0.0349

Table 7.2: The inputs for the examples using the octahedron and the pyra-

mid
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VERTEX 3 \ _ ROTAT ION

FACE 4

AX 18

Figure 7.6: The initial configuration of the octahedron and the pyramid for

the type (a) contact example

Figure 7.7: The configuration of the octahedron and the pyramid at the

time of the type (a) contact
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Figure 7.8: The initial configuration of the octahedron and the pyramid for

the type (b) contact example

+Y_, +Z_ octant. However, the angle between the Z, axis and the rotation

axis is relatively small.

For the given initial position and velocity vector, this means that the

first contact between A and B will probably occur when vertex 1 of A

touches face 5 of/3, which is the base of the pyramid. This is confirmed

by the collision detection algorithm. The predicted time of first contact

between A and B is T_ = 7.30. At this time, a type (b) contact occurs

between vertex 1 of A and face 5 of/3. The time of first contact occurs

in the first cycle of cat because of the low rotation rate. The value of ¢vT_

modulo 3600 is 14.60 ° . The approximate configuration of A and/3 at the

time of collision is shown in Figure 7.9.

Example of a Type (c) Contact at Collision Figure 7.10 shows the

initial configuration of A and/3 for this example. The initial orientation
of A and the rotation axis are the same as those chosen for the previous

example. The initial position of .4 is such that it lies below the base of the

pyramid representing/3 in the +X, +Y, -Z octant of the reference coor-

dinate system. However, in this case, the three components of xo are closer
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CE 5

VERTEX /_'

Figure 7.9: The configuration of the octahedron and the pyramid at the

time of the type (b) contact

in magnitude than was the case for the previous example. The velocity

vector is again directed toward the center of face 5 of/3.

The difference in the initial position of A for this example relative to

to the preceding example causes the first contact to be a type (c) collision.

The collision detection algorithm predicts that the first contact between A

and B will take place at Tc = 8.90. At this time, edge 2 of A touches edge

5 of/3, which is one of the edges bounding face 5 of B. The time of first

contact occurs in the first cycle of wt when the value of coTe modulo 360 ° is

17.80 °. The approximate configuration of A and/3 at the time of collision

is shown in Figure 7.11.

7.3 Examples of Two Nonconvex Polyhedra

The moving object and the obstacle were both represented by convex poly-

hedra for the examples discussed in the two preceding sections. For the

examples presented in this section, A and B are both represented by non-

convez polyhedra. .3, consists of two rectangular boxes forming the L-
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Compare this figure to Figure 7.8 which shows the initial configuration for

the type (b) contact example.

Figure 7.10: The initial configuration of the octahedron and the pyramid

for the type (c) contact exaznple
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Figure 7.11: The configuration of the octahedron and the pyramid at the

time of the type (c) contact

shaped box shown in Figure 7.12. The center of rotation of A, as indicated

in the figure, is located at the geometric center of the larger rectangular

box. This larger box is denoted A1 and the smaller box is denoted As.

The dimensions of the two rectangular boxes and the numbering of their

respective features are also indicated in Figure 7.12. The radius of the

sphere enclosing A -= A1 _ ,A2 is r a -" 18.68.

The two convex polyhedra that are joined to form the nonconvex poly-

hedron representing B are a rectangular box and a pyramid. The base

of the pyramid is connected to the rectangular box in the manner shown

in Figure 7.13. The figure also shows the dimensions of the box and the

pyramid and the numbering of their features. The origin of the reference

coordinate system is located at the geometric center of the rectangular box.

The rectangular box is referred to as B1 and the pyramid is referred to as

B2 so that B = B1 U B2. The center of the sphere enclosing B is located at

x b=[0 6 0IT and its radius isrb=53.70.

The initial configuration of ,4. and its linear and angular velocity vectors

for each of the three examples are listed in Table 7.3.
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Figure 7.12: .A is the union of two rectangular boxes
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Figure 7.13: B is the union of a rectangular box and a pyramid
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Initial Position of C=

Contact at Collision xo

Type (a) [+55 -41.25 +75 ]T

Type b) [ +10 +56 +75 ]T

Type (c) [+55 -41.25 -30 IT

(Constant) Linear Velocity Vector of A

Contact at Collision v

Type (a) [ -4.8988316 +3.6741237 -3.3914988 ]T

Type (b) [ -0.18340136 -0.58688434 -0.78862584 IT

Type (c) [ -8.1759198 +6.1319399 +6.2891691 ]T

Initial Orientation of A

Contact at Collision Yaw (°) Pitch (°) Roll (°)

Type (a) -36.869898 0 0

Type (b) 0 0 0

Type (c) -36.869898 0 0

(Constant) Angular Velocity Vector of .A

Contact at Collision _(°/t)

Type (a) [-13.4 -21.2 0 ]T

Type (b) [ +3.9777864 +2.7844505 +1.1933359 IT

Type (c) [-15 -20 0 ]T

Contact at Collision

Type (a)

Type (b)

Type (c)

I1 -x ll I IIvll
104.32 7 25.08

90.69 1 5

78.47 12 25

1.168

1.630

0.6793

Table 7.3: The inputs for the examples using the two nonconvex polyhedra
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Example of a Type (a) Contact at Collision The initialconfiguration

of .4. and B for this example is depicted in Figure 7.14. In this case, .A is

located above B. The initial position of ,A is such that C" lies in the plane

passing through edges 7 and 1 of B1. The initial orientation of .A is such

that the Z,. axis is parallel to the Z axis but the X, and Y_ axes are rotated

-36.87 ° from the X and Y axes. For this orientation, faces 1 and 2 of both

•,41 and Az are initially perpendicular to the plane passing through edges 1

and 7 of B1. Faces 3 and 4 of A1 and .As are initially parallel to this plane.

This is illustrated in the view of the initial configuration of A and B in the

X-Y plane included in Figure 7.14.

The velocity vector and the rotation axis are also indicated in Fig-

ure 7.14. The velocity vector is directed toward vertex 8 of B1. This is

the vertex of B closest to A at the initial time. The largest component of

the angular velocity vector lies along the -Y,, axis so that the rotational

motion of A is almost entirely negative pitch.

The initial configuration and the trajectory of A are such that the first

contact is most likely to occur between vertex 8 of B1 and either face 1, 5,

or 6 of A1 or face 2, 5, or 6 of .As. This is verified by the results of the

collision detection algorithm. The first contact between .A and B is found

to be a type (a) contact between face 5 of As and vertex 8 of B1. This

collision occurs in the first cycle of cat at T_ = 5.965. The value of caT_

modulo 360 ° is 149.60 ° . The approximate configuration of .A and B at T_

is shown in Figure 7.15.

Example of a Type (b) Contact at Collision In this case, .A is ini-

tiM1y located above B as shown in Figure 7.16. The velocity vector is

directed toward vertex I of B2, which isthe apex of the pyramid. The ini-

tialorientationof .A issuch that itsbody axes are parallelto the reference

axes. The rotation axis points into the +X_, +Y_, +Z_ octant and passes

through faces 3 and 4 of .At.

The collisiondetection algorithm finds the time of the firstcollision

between .4.and B to be T¢ = 45.70. At thistime, a type (b) contact occurs

between vertex 2 of.At and face 2 ofB2. Since the angular speed isrelatively

low, the time of firstcontact occurs in the firstcycle of cat. The value of

caT_ modulo 360° is 228.5°. The approximate configuration of .A and B at

the time of collisionis shown in Figure 7.17.
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Figure 7.14: The initial configuration of the nonconvex polyhedra for the
type (a) contact example
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Figure 7.15: The configuration of the nonconvex polyhedra at the time of

the type (a) contact

Example of a Type (c) Contact at Collision The initialconfiguration

for thisexample is similarto that used above for the example of a type (a)

contact. The initialposition of A again liesin the plane passing through

edges 7 and 1 of/_I. However, C ° now liesinitiallyin the +X,-Y, -Z

octant of the reference coordinate system, below B. The initialorientation

of -4 isthe same as the initialorientationdescribed above for the example

of a type (a) contact at collision.The velocity vector is directed toward

the midpoint of edge 7 of BI. This edge isthe edge of/_ closestto .4 at the

initialconfiguration.The axisof rotationischosen to coincide with the -I/'_

axis so that the rotational motion of -4 ispure negative pitch. Figure 7.18

shows the initialconfiguration of .4 and B for this example.

For the chosen trajectory of -4, the firstcontact is expected to occur

when one of edges 9, 10, or 12 of -41 or edges 11 or 12 of -42 touches edge 7

ofEl. The resultof the collisiondetectionalgorithm verifiesthisprediction.

The algorithm finds that the firstcontact between -4 and B willtake place

at Tc = 3.595. At this time, edge 9 of -41 touches edge 7 of El, a type (c)

contact. The value of Tc fallsin the firstcycle of cat and the value of caTc

modulo 3600 is89.875°. The approximate configuration of -4 and B at the
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Figure 7.16: The initial configuration of the nonconvex polyhedra for the

type (b) contact example
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Figure 7.17: The configuration of the nonconvex polyhedra at the time of

the type (b) contact

time of collision is shown in F_gure 7.19.

7.4 Examples of Unexpected Types of Con-

tact at Collision

The discussion of the examples in the previous sections indicates that, in

most cases, the type of contact at collision could be predicted from the

choice of the initial configuration and the direction of the linear and an-

gular velocity vectors. This section will present three examples where the

actual type of contact at collision as determined by the algorithm is not

the contact that might be expected based on the choice of these quantities.

The interaction between the rotation and the translation of A is harder

to predict for these examples than for the examples in the first three sec-

tions. In these cases, it is difficult to visualize which features of A might

be touching/3 without knowing how far into its rotation cycle .A is located

at a given position of C ".

One example is discussed below for each of the combinations of moving
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Figure 7.18: The initial configuration of the nonconvex polyhedra for the

type (c) contact example
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Figure 7.19: The configuration of the nonconvex polyhedra at the time of

the type (c) contact

object and obstacle used in sections 7.1, 7.2, and 7.3. The initial position

and orientation of .,4 as well as the linear and angular velocity vectors for

these examples are shown in Tables 7.4, 7.5, and 7.6, respectively.

Example of an Unexpected Type (b) Contact at Collision using

the Rectangular Boxes The two rectangular boxes used in section 7.1

are also used for the firstexample of an unexpected type of contact at

collision.For thisexample, the smaller rectangular box representing A lies

in front of the largerbox representing B as shown in Figure 7.20. Because

the velocity vector is directed toward the midpoint of edge 7 of B, it is

expected that a type (c) contact will occur between this edge of B and

some edge of .A. However, the collisiondetection algorithm predicts that

the firstcontact isa type (b) contact occurring at Tc = 43.12 when vertex

7 of .A touches face 2 of B. Face 2 of B is one of the two faces that meet

at edge 7 of B. In thiscase, the rotation of .A causes vertex 7 to come into

contact with face 2 of B before any of the edges of .A are close enough to

touch edge 7 of B. The approximate configuration of .,4and _ at the time

of collisionis shown in Figure 7.21
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I X_ - Initial Position of C a

[ [+50 -40 -30 ]T

v- (Constant) Linear Velocity Vector of A

[-0.63799863 +0.52541064 0.56293997 ]T

Initial Orientation of A

Yaw (°) Pitch(°) Roll (o)

0 0 0

I o7 - (Constant) Angular Velocity Vector of A

I[-6.3508528 -31.754265 +44.455971 ]r (o/t)

I ll_- x_llI Ilvll I _ = II_li(°/t)

I 70.71 1 55

Table 7.4: The inputs for the example of an unexpected contact using the

rectangular boxes

260



[ X, -Initial Position of C _

[ [ +10 +30 -55 ]r

v- (Constant) Linear Velocity Vector of A ]

[-2.0211646 -4.0423208 +11.116405 ]T ]

Initial Orientation of .A

Yaw (°) Pitch (°) Roll (°)

0 45 0

-(Constant) Angular Velocity Vector of _[I

[+11.5470 +16.3299 0 ]T (o/t) ]

II_- _II I llvllI --II, II.(°I0
67.82 12 I 2O

_o_/llvll

0.1454

Table 7.5: The inputs for the example of an unexpected contact using the

octahedron and the pyramid
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X, - Initial Position of C _

[-5 +42 +73 ]T

] v- (Constant) Linear Velocity Vector of .2,

[ [ +0.38100039 -2.2860023 -1.9050019 ]T

Initial Orientation of .A.

Yaw (°) Pitch (°) Roll (°)

-90 0 0

[ J - (Constant) Angular Velocity Vector of .A [

I [+14.9256 0 +1.49256 ]z' (o/t) I

I II_ xbll =ll_ll(°/t)Ilvlll

I 81.55 3 15

_/iivll

1.630

Table 7.6: The inputs for the example of an unexpected contact using the

two nonconvex polyhedra
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A type (c) contact involving edge 7 of _ is expected.

Figure 7.20: The initial configuration of the rectangular boxes for the ex-

ample of an unexpected type (b) contact
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7

The actual collision is a type (b) contact involving face 2 of B.

Figure 7.21: The configuration of the rectangular boxes at the time of the

type (b) contact

Example of an Unexpected Type (c) Contact at Collision using

the Octahedron and the Pyramid The second example of an unex-

pected contact at collision uses the octahedron and the pyramid introduced

in section 7.2. Figure 7.22 shows that the octahedron is initially located

below and to the right of the pyramid for this example. This figure also

shows that the the velocity vector is chosen to point toward vertex 3 of B.

Therefore, a type (a) contact is expected to occur between this vertex of B

and some face of A. In this case, the first contact predicted by the collision

detection algorithm is a type (c) contact at T¢ -- 4.69. At this time, the

orientation of ,4, is such that edge 6 of A touches edge 6 of B. Edge 6 of B is

one of the edges that meet at vertex 3 of B. The approximate configuration

of A and B at the time of collision is shown in Figure 7.23

Example of an Unexpected Type (c) Contact at Collision using

the Nonconvex Polyhedra The nonconvex polyhedra of section 7.3

are used for the final example of an unexpected type of contact at collision.

The initial configuration of the two nonconvex polyhedra for this example is
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A type (a) contact involving vertex 3 of/3 is expected.

Figure 7.22: The initial configuration of the octahedron and the pyramid

for the example of an unexpected type (c) contact
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The actual coUision is a type (c) contact involving edge 6 of/3.

Figure 7.23: The configuration of the octahedron and the pyramid at the

time of the type (.c) contact

shown in Figure 7.24. The L-shaped box representing .A is initially located

above and to the right of B. The velocity vector points toward the midpoint

of edge 4 of B1 which coincides with edge 6 of B_..A is initially rotated

900 about the -Z_ axis and the rotation axis has its largest component

along Y_. The expected collision is therefore a type (b) contact between

face 5 of B1 or face 2 of B2 and some vertex of .A. Instead, the algorithm

predicts a type (c) contact at Tc = 8.963. The orientation of .4 at Tc is such

that edge 8 of A1 touches edge 4 of B1. Figure 7.25 shows the approximate

configuration of .4 and B at the time of the type (c) contact.

7.5 Summary of Examples

The examples discussed in sections 7.1 through 7.4 iUustrate the versatility

of the new collision detection algorithm. First, these examples have shown

that the algorithm is capable of handling cases where the moving object and

obstacle are either convex or nonconvex polyehdra. Also, it can successfully
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A type (b) contact involving face 5 of B1 or face 2 of Bz is expected.

Figure 7.24: The initial configuration of the nonconvex polyhedra for the

example of an unexpected type (c) contact
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The actual collision is a type (c) contact involving edge 4 of/31.

Figure 7.25: The configuration of the nonconvex polyhedra at the time of

the type (c) contact

detect collisions involving all three types of contacts. Finally, the algorithm

can hartdie cases of both high and low angular speeds relative to the linear

speed. This is confirmed by the range of values for r_w/I ]v H from 0.0349

to 12.48 for the examples presented in these four sections. The hierarchy

described in Chapter 6 allows the new algorithm to solve all these different

cases with a minimum amount of searching for zeros of the C-functions.

The discussion of the examples in the preceding sections has emphasized

that the new algorithm correctly solves the collision detection problem in

a broad range of cases. Implementation issues such as the time needed

to execute the algorithm for these examples have not been discussed. The
next section will consider the issue of execution time for several different sets

of examples. In particular, the execution time required for the algorithm

described in Chapter 6 will be compared with the time required for a similar

algorithm that uses a simpler zero search procedure.
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7.6 Comparison of Two Zero Search Meth-

ods

From the description in Chapter 6, it is clear that the most complicated

procedure used by the algorithm is the configuration space dynamic colli-

sion dectection procedure. The most complex part of this procedure is the

examination of the C-functions defined by features of the convex polyhe-

dra making up A and B. This procedure typically requires execution of

one of the numerical zero search procedures described in sections 5.1.5.2

and 5.2.2.3 for many of these C-functions. These numerical zero search

procedures are also quite complex.

This section will consider a different zero search method that is much

simpler than those described in Chapter 5. A collision detection algorithm

is introduced below that uses this simpler zero search method. A com-

parision is made between the time required to execute the algorithm of

Chapter 6 and the time required to execute this algorithm.

This section is organized as follows. First, in section 7.6.1, the simpler

zero search method is described and compared to the search procedures of

Chapter 5. Then, the sets of examples to be used in the comparison of the

two search methods are presented in section 7.6.2. The resulting execution

times are tabulated for each set of examples in section 7.6.3. This section

also contains some comments on different aspects of the collision detection

problem that influence these times for each version of the algorithm.

7.6.1 A Simpler Zero Search Method

Recall the basic outline of a procedure for finding the zeros of a function

given at the beginning of section 5.1.5.2. This procedure finds the zeros in

a specified bounded interval of time by sampling the value of the function

at certain test points in the interval. The array of test points in a search

interval selected by the procedures described in Chapter 5 consists of the

beginning and end of the search interval and any points in the interval where

the first or second derivative of the C-function is zero. For this reason, the

zero search procedures described in Chapter 5, and used by the algorithm

described in Chapter 6, will be collectively referred to as the "derivative"

zero search method.
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The points where the first or second derivative of the C-function equals

zero are the points where the curvature changes sign or where the func-

tion has a relative maximum or minimum. These points are found by a

numerical search procedure for a C-function with the form of cases 3, 4,

or 5 of class H described in section 5.2. As was explained in Chapter 5,

this choice of test points insures that only a single zero of the C-function

is located between two consecutive test points where the value of the C-

function changes sign. Therefore, no zeros of the C-function in the given

interval are overlooked by the derivative zero search method.

The simpler zero search method differs from the derivative zero search

method only in the selection of the test points in a search interval. The new

test points are selected from a set of points separated by a constant spacing

of 2_vt in a cycle of_t. This scheme is feasible because the requirement that

the C-function be applicable for a valid collision restricts the final bounded

zero search intervals to portions of a single cycle of wt. This simpler zero

search method will be called the "fixed Awt" method.

The number of points in a cycle of wt for the fixed Awt zero search

method can be varied by changing the value of Awt. These points di-

vide a single cycle of wt into 360°/(Awt °) intervals of equal length. For

example, if Awt = 72 °, then the fixed set consists of the four points

wt = (72 °, 144 °, 216 °, 288 ° } and the cycle ofwt is divided into 3600/72 ° = 5

equal intervals.

The test points chosen for a given search interval are the bounds of the

interval and any points from the fixed set which lie in the interval. The

values of t in the interval that correspond to values of wt in the fixed set

can easily be found by comparing the value of wt at the bounds of the

interval modulo 27r and the values of wt in the fixed set. As an example,

suppose that Aa_t = 72 ° and the bounds of a search interval modulo 360 °

are 15 ° and 160 ° , respectively. Then, the test points for that interval are

wt = (15 °, 72 °, 144 °, 160°}. These values can be converted back to values

of t by adding the appropriate multiple of 360 ° and dividing the result by

_g.

The steps used to find the bounded intervals for the zero search of a

given C-function are the same for both versions of the collision detection

algorithm. The examination of a C-function involving the checks of appli-

cability, its physical constraint, and its analytic root regions described in

section 6.2.3.1 is unchanged for the new version of the algorithm using the
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fixed 2_t zero search method.

The examples chosen for the comparison of the versions of the algorithm

using the derivative and the fixed 2_t zero search methods are described
in the next section.

7.6.2 The Examples

Examples are considered using three different pairs of polyhedra for the

moving object and obstacle. For the first two sets of examples, both A

and 13 are represented by rectangular boxes. The boxes used for the first

set of examples are the same boxes that were introduced in section 3.3.1

and used for the examples discussed in sections 6.3 and 7.1. As can be

seen in Figure 3.8, the box representing A is much smaller than the box

representing B. In fact, the dimensions of the box representing A are one-

fourth the dimensions of the box representing B.

For the second set of examples, the box representing A is enlarged while

the box representing B remains the same as that used for the first set. The

dimensions of the two boxes for this second set are shown in Figure 7.26.

In this case, the dimensions of the box representing .4 are three-fourths the

dimensions of the box representing 13. In other words, the box representing

A for this set of examples is three times larger than the box representing

.,4. for the first set of examples.

The rectangular boxes used to represent A and B for the first two sets

of examples are convex polyhedra. For the third set of examples, A and B

are represented by nonconvex polyhedra. Specifically, they are represented

by the same two polyhedra used for the examples discussed in section 7.3.

These two nonconvex polyhedra are shown in Figures 7.12 and 7.13.

The particular examples considered for each of these sets of polyhedra

are described in the following sections. The quantities specifying the initial

configuration and motion of A are listed in tables, as was the case for the

examples discussed in sections 7.1 through 7.4. The vectors xo, v, and ca are

given in reference coordinates and the initial orientation of .4 is given as a

set of yaw, pitch, and roll angles. The tables also list the values of [Ix,, - xa[I,

Ilvl[, and r=_/llv[I. Sketches of A and B at the initial configuration and

at the time of collision, such as those given for the examples in the first

four sections of this chapter, axe omitted for these examples. Instead, the

times of first contact and the features of .4 and 13 that are touching at first
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contact are listed in a table.

7.6.2.1 The Two Sets of Rectangular Box Examples

Twelve examples are considered for each of the two sets of rectangular

boxes. These twelve examples are divided into three subsets containing

four examples of each of the three types of contacts at collision.

Tables 7.7,7.8,7.9,and 7.10 summarize the examples using the smaller

rectangular box for ._. The vectors describing the initialconfiguration and

motion of .A are given in Tables 7.7, 7.8,and 7.9. These three tables list

the inputs for the examples with type (a),(b),and (c)contacts at collision,

respectively.The times offirstcontact and the featurestouching at collision

for alltwelve of these examples are given in Table 7.10. The firstof these

examples is the same example given for a type (a) contact at collisionin

section 7.1.

Similarly,the twelve examples using the largerrectangular box forA are

summarized in Tables 7.11, 7.12, 7.13,and 7.14. The inputs for the exam-

pleswith type (a),(b),and (c)contacts at collisionare listedin Tables 7.11,

7.12, and 7.13, respectively.Table 7.14 liststhe times of firstcontact and

the features touching at collisionfor alltwelve of these examples.

As can be seen from the values of r_/[[vll in the tables,six of the

twelve examples for each set of boxes are cases where the rotation rate is

high compared to the rate of translation.For these six cases,the value of

r_w/[[ v[t is much larger than one. The remaining six examples are cases

where the rate of rotation is low compared to the rate of translation. The

value of r_ca/[[v H is less than one for these cases.
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Initial Position of C" ]

Example #] x,, I
1,2,3,4 I [-32 +25 +100 IT]

(Constant) Linear Velocity Vector of .,4

Example # v

1,2,3,4 [ +0.28603370 -0.23240238 -0.92960952 ]T

Initial Orientation of A

Example # Yaw (°) Pitch (°)

1,3 0 0

2,4 -36.869898 0

P_oU(o)

(Constant) Angular Velocity Vector of .,4

Example # 5'°/t)

1 [-6.3508528 -31.754265 +44.455971 ]T

2 [-29.2 -40.6 0 IT

3 [-0.11547005 +0.57735027 +0.80829038]2
4 [+0.632 +0.776 0 r

Example #

1

2

3

4

107.93 1

107.93 1

107.93 1

107.93 1

= IlZll(o/,) ,'_,,,/l[vH

55 12.48

50.01 11.35

1 0.227

1.001 0.227

Table 7.7: The inputs for the type (a) contact examples using the smaller

rectangular box for A
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Initial Position of C _

Example #

5,6,7,8 [ +10 +100 -25 ]T

(Constant Linear Velocity Vector of .A

Example # v

5,6,7,8 [-0.10866356 -0.95623934 +0.27165890 ]T

Initial Orientation of A

Example # Yaw (°) Pitch (°) Roll (°)

5,6,7,8 0 0 0

(Constant) Angular Velocity Vector of A

Example # _q°/t)

5 [+5 0 +49.5 ]r

6 [-6.3508528 -31.754265 +44.455971 IT

7 [+0.1 0 +0.99 ]T

8 [--0.11547005 --0.57735027 +0.80829038 ]T

Example #:

5

6

7

8

[l_-_[[][]v[[iw=[[_[[<o/t>
103.56 1 49.752

103.56 1 55

103.56 1 0.995

103.56 1 1

,o,_/Hvll

11.29

12.48

0.226

0.227

Table 7.8: The inputs for the type (b) contact examples using the smaller

rectangular box for A
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L

Initial Position of C"Example #[ xo

I 9,10,n,12[ [+100 -75 -30 IT
(Constant) Linear Velocity Vector of .A

Example #[ v

9,10,11,12 l[-0.76921916 +0.57691437 +0.27472113 ]T

Initial Orientation of A

Example # Yaw (°) Pitch (°) Roll (°)

9,10,11,12 -36.869898 0 0

(Constant) Angular Velocity Vector of A

Example #

9

10

,_(°/t)

[ +30.8 +39.4 0 T

[ --24.133240 --21.592903 +44.455971 ]T

0 T11 [ +0.616 +0.788

12 [ -0.21959309 -0.1962911 +0.40414519 ]T

Example #

9

10

11

12

128.55 1 50.01

128.55 1 55

128.55 1 1.0002

128.55 1 0.5

11.35

12.48

0.227

0.113

Table 7.9: The inputs for the type (c) contact examples using the smaller

rectangular box for A
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Example Time of FeaturesTouching
First Contact at First Contact

Type (a) Contacts Face of .A Vertex of B

1 45.666 2 1

2 43.796 6 1

3 48.927 4 1

4 51.761

Type (b) Contacts Vertex of .A Face of B

5 87.231 5 3

6 80.790 1 3

7 86.397 5 3

8 83.392 5 3

Type (c) Contacts Edge of A Edge of B

9 97.981 11 7

10 99.542 4 7

11 96.334 12 7

12 99.998 4 7

Table 7.10: The resulting collisions for the examples using the smaller

rectangular box for A
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Initial Position of C -_

Example # X,

1,2,3,4 [-32 +25 +100 ]T

(Constant) Linear Velocity Vector of ,4

Example # v

1,2,3,4 [ +0.28603370 -0.23240238 -0.92960952 IT

Initial Orientation of A

Example _ Yaw (°) I Pitch (°) Roll (°)

1,3 0 0 0

2 -36.869898 0 +90

4 -36.869898 0 0

(Constant) Angular Velocity Vector of .2,

z(°/t)Example #

1 [-6.3508528 -31.754265 +44.455971 ]T

2 [--1.6 +1.2 +50 r

3 [--0.11547005 +0.57735027 +0.80829038 ]T

4 [ +0.632 +0.776 0 ]r

Example #

1 107.93

2 107.93

3 107.93

4 107.93

IIvllI
1

1

1

1

= llall (°/t) ,'o,,,/IIvll
55 37.44

50.04 34.06

1 0.681

1.001 0.681

Table 7.11: The inputs for the type (a) contact examples using the larger

rectangular box for fl,
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Initial Position of C"

Example # xo

5,6,7,8 [ +10 +100 -25 ]r

(Constant) Linear Velocity Vector of `4Example # v

[ 5,6,7,8 [ --0.10866356 -0.95623934 +0.27165890 ]T

Initial Orientation of ,4

Example # Yaw (°) Pitch (°)

5,6,7,8 0 0

Roll(o)
0

(Constant) Angular Velocity Vector of ,4

Example # 5 (°/t)

5 [+5 0 +49.5 ]T

6 [--6.3508528 --31.754265 +44.455971 IT

[+0.1 0 +0.99 IT

8 [ +0.11547005 --0.57735027 +0.80829038 IT

Example #

103.56 1

103.56 1

103.56 1

103.56 1

,.,.,= I1 11(°/t) ,o /Jlvlt

49.752 33.87

55 37.44

0.995 0.677

1 0.681

Table 7.12: The inputs for the type (b) contact examples using the larger

rectangular box for ,4
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Initial Position of C _

Example # xo

9,10,11,12 [ +100 -75 -30 ]T

(Constant) Linear Velocity Vector of .A

Example # v

9,10,11,12 [-0.76921916 +0.57691437 +0.27472113 ]T

Initial Orientation of A

Ron (o)Example # Yaw (°) Pitch (°)

9,10,11,12 -36.869898 0

(Constant) Angular Velocity Vector of .A

Example #:

[ +30.8 +39.4 0 ]T

10 [ -24.133240 -21.592903 +44.455971 ]T

11 [ +0.616 +0.788 0 ]T

12 [ -0.43878618 -0.39259821 +0.80829038 ]T

Example #

9

10

11

12

128.55 1

128.55 1

128.55 1

128.55 1

-- I1 11(°/t)

50.01 34.04

55 37.44

1.0002 0.681

1 0.681

Table 7.13: The inputs for the type (c) contact examples using the larger

rectangular box for .A
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Example Time of Features Touching

# First Contact at First Contact

Type (a) Contacts Face of A Vertex of B

I 19.573 2 I

2 46.522 4 I

3 28.446 4 1

4 42.606 2 1

Type (b) Contacts Vertex of .A Face of B

5 73.407 5 3

6 54.847 1 3

7 73.746 5 3

8 63.779 5 3

Type (c) Contacts Edge of .A Edge of B

9 69.764 11 7

I0 79.939 4 7

11 69.751 10 7

12 79.479 4 7

Table 7.14: The resulting collisions for the examples using the larger rect-

angular box for A
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7.6.2.2 The Set of Examples using Nonconvex Polyhedra

Six examples are considered for the two nonconvex polyhedra of section 7.3.

This includes two examples of a type (a) contact at collision, one example

of a type (b) contact at collision, and three examples of a type (c) contact

at collision. The inputs for the two type (a) contact examples are listed in

Table 7.15. Table 7.16 lists the inputs for the single type (b) contact exam-

ple and Table 7.17 lists the inputs for the three type (c) contact examples.

These three tables show that the quantity r_w/H vii takes on both high and

low values for these examples.

The times of first contact and the features touching at first contact are

given for all six examples in Table 7.18. The examples of a type (a), (b),

and (c) contact at collision described in section 7.3 correspond to examples

1, 3, and 5, respectively. The example of an unexpected contact at collision

for these polyhedra given in section 7.4 corresponds to example 4.

282



Initial Position of C _

Example # x_

1 [ +5 +64 +35 ]r
2 [ +55 -41.25 +75 IT

(Constant) Linear Velocity Vector of .A

Example # v

1 -0.12369267 -0.98954139 -0.074215604 ]T

2 [ --4.8988316 +3.6741237 --3.3914988 ]T

Initial Orientation of A

Example # Yaw (°) Pitch (°) Roll (°)

1 0 0 0

2 -36.869898 0 0

(Constant) Angular Velocity Vector of .A

Example # 5(°,/t)

1 +3.9777864 +2.7844505 +1.1933359 ]T

2 [--13.4 --21.2 0 ]r

I

Example # ]IX,- x'blt llvllI
i

I 67.93 I

2 104.32 7

,,.,-- I1_11(o/_) ,',,_/II",'11
5 1.630

25.08 1.168

Table 7.15: The inputs for the type (a) contact examples using the non-

convex polyhedra
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Initial Position of C a

Example # xo

3 [+10 +56 +75 ]r

(Constant) Linear Velocity Vector of ,4

Example _ v

3 [-0.18340136 -0.58688434 -0.78862584 IT

Initial Orientation of ,4

Example # Yaw (°) Pitch (°)

3 0 0

Ron (°)
0

(Constant) Angular Velocity Vector of A

Example # J(°/t)

3 [ +3.9777864 +2.7844505 +1.1933359 IT

Example # II_- _111IlvtlI_ =It'll(°/*) r"w/]lvll

90.69 I 11 5 1.630

Table 7.16: The inputs for the type (b) contact example using the aoncon-

vex polyhedra
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Initial Position of C'G

Example # xo

4 [-5 +42 +73 ]r
5,6 [+55 -41.25 -30 ]T

(Constant) Linear Velocity Vector of A

Example # v

4 [ +0.38100039 -2.2860023 -1.9050019 IT

5 [ --8.1759198 +6.1319399 +6.2891691 IT

6 --1.3626533 +1.0219900 +1.0481949 ]T

Initial Orientation of A

Example # Yaw (°) Pitch (°)

4 -90 0

5,6 -36.869898 0

RoU(°)

Constant) Angular Velocity Vector of A

Example# ,_(°/t)
4 [ +14.9256 0 +1.49256 ]r

5,6 [-15 -20 0 ]r

Example # I1_- _111II,,ll ,,,= I1_tt(o/t)
81.55 3 15

78.47 12 25

78.47 2 25

_o_/LIvii

1.630

0.679

4.076

Table 7.17: The inputs for the type (c) contact examples using the noncon-

vex polyhedra
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Example Time of FeaturesTouching
First Contact at First Contact

Type (a) Contacts Faceof A Vertex of B

1 36.15 1 of A1 1 of B_

2 5.965 5 of .A2 8 of B1

Type b) Contacts Vertex of .A Face of B

3 45.70 2 of A1 2 of B_

Type (c) Contacts Edge of A Edge of B

4 8.963 8 of .A1 4 of B1

5 3.595 9 of .A1 7 of B1

6 18.92 11 of .A2 7 of B1

Table 7.18: The resulting collisions for the six examples using the nonconvex

polyhedra
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7.6.3 Comparison of the Execution Times for the Two

Zero Search Methods

The CPU time required to execute the versions of the collision detection al-

gorithm using the two different zero search methods was measured for each

of the examples described in section 7.6.2. Both versions of the algorithm

were implemented in FORTRAN on a VAX 11/780 computer. Access to

this computer's memory is shared among many users so that the computers

resources were not completely dedicated to running the collision detection

programs. Also, the FORTRAN versions of the algorithm are experimental

versions primarily intended to verify the concepts presented in the previous

chapters of this thesis. Relatively little effort was devoted to optimizing

this code. For these reasons, the CPU times listed in the tables below

are presented only for the purpose of comparing the two zero search meth-

ods. These times should not be interpreted as absolute measures of the

computational efficiency of the algorithm.

The value of _.,,t to be used for the fixed ,_.,,t zero search was specified

as an additional input to the new version of the collision detection algo-

rithm. The execution time required for the new version of the algorithm

was measured for three different values of A,,,t. Thus, each of the examples

was run four times. The first run used the collision detection algorithm

with the derivative zero search method and the last three runs used the

collision detection algorithm with the fixed Awt zero search method with

2uat set to three different values. The three values of A,_t that were used

and the corresponding number of divisions per cycle of _t are shown below:

A-,t

60 °

36 °

18 °

# of divisions per cycle

6

I0

20

The execution times measured for the twelve examples using the smaller

rectangular box for A are shown in Table 7.19. The execution times for the

examples using the larger rectangular box for .,4 are shown in Table 7.20.

There are four cases shown in these two tables for which the algorithm

using the fixed A_t zero search method fails to predict the correct time

of first contact. These are indicated by an asterisk (,) in the tables. The

reasons for these failures will be discussed in section 7.6.3.1.
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The differencesin execution time among the examplesusing the same
set of boxeswill be discussedin section 7.6.3.2. This section also contrasts

the execution times required for similar examples using the two different

sets of boxes.

Table 7.21 lists the execution times for the six examples using the two

nonconvex polyhedra for A and B. These results are discussed in sec-

tion 7.6.3.3. The examples having different types of contacts at collision

are compared. In addition, the execution times for the examples using the

two nonconvex polyhedra are compared with those for the rectangular box

examples,

Section 7.6.3.4 summarizes the results of the comparison of the execu-

tion times for the versions of the algorithm using the fixed Aw_ zero search

method and the derivative zero search method.
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Example
#

Type of

Collision

%,,,/flvl]
CPU Time (sec)

Derivative

Zero

Search

Fixed Awt Zero Search

( # of Divisions per Cycle )

20

1 a

2 a

5 b

6 b

9 c

10 c

3 a

4 a

7 b

8 b

11 c

12 c

High Rotation Rate Examples

12.5 1.080

11.3 0.991

11.3 0.761

12.5 0.847

11.3 1.051

12.5 1.072

Low Rotation Rate Examples

0.227 0.939 _

0.227 0.881

0.226 0.757

0.227 0.852

0.227 0.835

0.113 0.926

1.070

1.006

0.751

0.833

1.030

1.058

0.907

0.870

0.743

0.832

0.820

0.901

* The version of the algorithm using the fixed Awt zero search method did

not find the correct first contact for these cases.

Table 7.19: Execution times for the examples using the smaller rectangular
box for A
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Example
#

Type of

Collision

CPU Time (sec)

Derivative

Zero

Search

Fixed Amt Zero Search

( # of Divisions per Cycle )

6 I 10 I 20

High Rotation Rate Examples

1 a

2 a

5 b

b

9 c

10 c

37.4 1.272

34.1 1.891

33.9 1.185

37.4 1.044

34.0 1.532

37.4 1.420

Low Rotation

1.201 1.232

1.669 1.725

1.089 *

1.010 1.028

• 1.477

1.330 1.410

Rate Examples

3 a 0.681 0.962

4 a 0.681 0.902

7 b 0.677 0.806

8 b 0.681 0.909

11 c 0.681 0.882

12 c 0.681 0.944

0.937 0.941

0.901 0.903

0.799 0.800

0.904 0.906

0.860 0.862

0.938 0.942

1.314

1.869

1.126

1.067

1.552

1.457

0.948

0.911

0.800

0.910

0.864

0.943

* The version of the algorithm using the fixed _t zero search method did

not find the correct first contact for these cases.

Table 7.20: Execution times for the examples using the larger rectangular

box for A
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Example
#

Derivative

Zero

Type of

Collision
/IIvii

Search

1 a 1.630 4.119

2 a 1.168 2.854

3 b 1.630 3.054

4 c 1.630 2.888

5 c 0.679 2.622

CPU Time (sec)

4.0766

Fixed _wt Zero Search

( # of Divisions per Cycle )

2.711

6 10 I 20

4.084 4.088 4.102

2.837 2.840 2.844

3.021 3.023 3.034

2.850 2.856 2.859

2.629 2.630 2.633

2.701 2.690 2.712

Table 7.21: Execution times for the examples using the nonconvex polyhe-

dra
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7.6.3.1 Failure of the Fixed _l_t Zero Search Method to Find

the Correct First Contact

The first example for which the new version of the algorithm gave an incor-

rect answer for the first contact was example 7 using the smaller rectangular

box for A. The failure occurred for the runs using 6 and 10 divisions per

cycle of _vt. This corresponds to the two larger of the three fixed values

of Awt, 60 ° and 36 °. For this example, the C-function determining first

contact, f_l, has a relative maximum at t -- 43.518 in the search interval

[43.191, 43.935]. There are two zeros of f_l in this interval, one that is
not allowable between t -- 43.191 and t = 43.518 and an allowable zero at

t = 43.796 that represents the first contact between A and B.

The derivative zero search method used the point where the maximum

occurs, t -- 43.518, as one of the search points and correctly interpolated

between t = 43.518 and t = 43.935 for the allowable zero at t = 43.796.

However, the relative maximum of f_l was ignored by the fixed Awt zero

search method. The value of f_l is negative for all of the test points used

by this method in the interval [43.191, 43.935]. Therefore, the new version

of the algorithm concluded that f_l had no zeros in this interval. For

z._t = 36 ° and Awt - 60 °, the spacing between test points was too large

for the new version of the algorithm to find the zero of f_l representing the

first contact of .A and B. Hence, it erroneously concluded that a zero'of a

different C-function represented the first contact.

The two examples for which the new version of the algorithnm failed to

find the correct first contact when the larger rectangular box was used for .A

were examples 3 and 5. For example 3, the incorrect answer was obtained

for the run using 10 divisions per cycle of wt where Awt = 36 ° . In this

case, the C-function determining first contact, f_a, has a relative minimum

at t = 73.634 in the search interval [73.231, 74.168]. As was the case for

f_l in the example discussed above, f_3 has two zeros in this interval, an
allowable one at g = 73.407 that is the first contact and one that is not

allowable at t = 73.863.

The derivative zero search used the point where the minimum occurs,

t = 73.634, as one of the search points and correctly interpolated between

t = 73.321 and t = 73.634 for the allowable zero at t = 73.407. The fixed

Awt zero search used a search point at t = 73.806 that was slightly beyond

the exact minimum. This caused the iteration routine using the secant
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method to converge to the second zero at t = 73.863, the one that is not

allowable. This zero lies outside the interval [73.321, 73.806] used to start

the secant method, but the algorithm did not recognize this. It concluded

that the zero was in that interval and, hence, that it was allowable. Thus,

for this example, the new version of the algorithm correctly identified the

C-function whose zero represents the first contact of .A and 8. However,

the behavior of the iteration routine caused it to predict that another zero

of this function represented the first contact.

For example 5 using the larger rectangular box of .,4, the new version

of the algorithm failed to correctly identify the first contact using 6 divi-

sions per cycle of _t where A,.,t = 60 °. The C-function determining first

contact, f_1.7, has a relative minimum at t = 69.850 in the search interval

[69.722, 70.186]. It has positive orientation in this interval. There are two

zeros of fT1.7 in this interval, an allowable one at t = 69.764 that is the first
contact and one that is not allowable between t = 69.850 and t = 70.186.

The derivative zero search used the point where the minimum occurs,

t = 69.850, as one of the search points and correctly interpolated between

t = 69.722 and t = 69.850 for the allowable zero at t = 69.764. The fixed

A,,,t zero search used only two search points -- the beginning and end

of the interval. The value of f_1.7 is positive at both of these points, so

the algorithm concluded that this C-function had no zeros in the interval.

Thus, it also concluded that a zero of a different C-function represented the

first contact of A and 8.

From the discussion in the preceding paragraphs, it is clear that the fixed

,_.,,t zero search method is sensitive to the value of _t. If the choice of

this spacing is too large, it can fail to detect some zeros of the C-functions.

This wiU cause the algorithm either to predict an incorrect time of first
contact or to fail to detect a collision when one does occur. This is more

likely for cases with high rotation rates relative to the linear speed because

the C-functions change more rapidly in these cases.

The sensitivity to the choice of _w.,t is a disadvantage of the fixed _.,_t

zero search method. This problem does not occur when using the deriyative

zero search method because the test points are chosen to insure that no
zeros of a C-function are overlooked.
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7.6.3.2 Comparison of the Execution Times for the Two Sets of

Rectangular Box Examples

Tables 7.19 and 7.20 show that the examples using the larger box for .A

generally require slightly greater execution times using either algorithm

than the examples using the smaller rectangular box for A. This can be

attributed to the relative sizes of.A and B. The volumes of the regions where

the physical constraints are satisfied are increased by enlarging the box

representing A. Therefore, the trajectory of C a is more likely to penetrate

one of these regions when .A is represented by the larger box. Most of

the C-functions will satisfy their physical constraints for these examples.

The physical constraints are much less likely to be satisfied when A is

represented by the smaller box. Many more C-functions are eliminated

from the zero search by the physical constraints for these examples than

for the example s using the larger rectangular box for .A.

The high rotation rate examples have longer running times than the

low rotation rate examples because of the nature of the C-functions. As

explained in the beginning of this chapter, these functions are more oscil-

latory and have many relative maxima and minima for high rotation rates.

This means that they probably have more allowable zeros, which the colli-

sion detection algorithm must find and check for valid collisions. For lower

rotation rates, the C-functions are less oscillatory. They do not change as

quickly and may have no zeros or only one zero in the interval of interest.

This means that the iteration routine for finding the zeros and the check

of the third collision condition are executed less often for examples having

low rotation rates than for examples having high rotation rates relative to

the rate of translation.

Type (a) and (c) collisions take longer to detect than type (b) colli-

sions. This is expected because the type (a) and (c) C-functions have more

complex behavior as functions of time and require a more complicated zero

search procedure than the type (b) C-functions. Also, both versions of the

algorithm search for zeros of the type (b) C-functions before the type (a)

and (c) C-functions are examined. When a valid coUisibn is found for a

type (b) C-function, the updated zero search interval for the remaining C-

functions is smaller than when no valid collision is found for any type (b)

C-function.

In comparing the execution time for the two zero search methods for
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the two sets of rectangular box examples, the general trend is that the

fixed A_t zero search method takes slightly less time than the derivative

zero search method. On the average, 2-4_ less CPU time is used for the

runs specifying 6-10 divisions per cycles and only 1% less CPU time is

used for the runs specifying 20 divisions per cycle. In most of ttke cases,

the execution times are not significantly different for the versions of the

algorithm using the two zero search methods.

7.6.3.3 Comparison of the Examples using Nonconvex Polyhe-
• dra

An important factor that influences the execution time required by the

collision detection algorithm when A are B are nonconvex polyhedra is the

number of pairs of convex polyhedra that must be considerd separately.

Each additional pair of convex polyhedra defines another set of C-functions

that must be examined for allowable zeros that may be valid collisions of A

and B. For this set of examples, there are four pairs of convex polyhedra to

be checked because each of the nonconvex polyhedra representing A and B

has two convex pieces. There are three additional pairs of convex polyhedra

to be considered beyond the single pair for the rectangular box examples

considered above. This is the reason for the larger values of the execution

times listed in Table 7.21 relative to the values listed in Tables 7.19 and

7.20. These examples take 2 - 4 times longer than the examples using either

of the two sets of rectangular boxes for A and B.

The type of contact at collision was one factor mentioned in the previous

section that influences the amount of time required to execute the collision

detection algorithm. When A or B, or both, is a nonconvex polyhedron,

another factor that influences the execution time is which pair of convex

polyhedra .A_ and B_ first come into contact. For examples 1 and 3, the

first contact occurs between .A1 and B1 Since this is the first pair of convex

polyhedra to be considered by the algorithm, these examples take the least

time of all the examples for the two nonconvex polyhedra. The reason for

this. is that the upper bound of the zero search interval is decreased to the

time of first contact found for the first pair of polyhedra when the other

three pairs of polyhedra are considered. For examples 2, 4, 5, and 6, the

upper bound of the search interval is unchanged after the examination of

A1 and B1. Hence, the algorithm must examine the C-functions defined by
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the remaining three pairs of polyhedra in a larger interval than is the case

for examples 1 and 3.

The first contact occurs between A1 and B2 for examples 2 and 4.

This is the second pair of convex polyhedra to be considered by the al-

gorithm. Also, the trajectory for these two examples ia such that most of

the C-functions defined by all four pairs of polyhedra satisfy their physical

constraints. Therefore, the physical constraints do not efiminate many C-

functions from the zero search. For these reasons, these examples take the

most time of all the examples considered for the two nonconvex polyhedra.

For examples 5 and 6, the first contact occurs betweeen .A2 and B1. This

is the third pair of convex polyhedra considered by the algorithm. However,

the trajectories for these examples are such that the physical constraints

eliminate most of the C-functions involving features of B_ from the zero

search. This causes these two examples to take less time than examples

2 and 4, even though the first contact is not found until the third pair of

polyhedra is considered.

The results given in Table 7.21 show that there is a negligible reduction

in the execution time for the version of the algorithm using the fixed _hwt

zero search method relative to the version using the derivative zero search

method. For the six examples using the nonconvex polyhedra, the version

of the algorithm using the fixed _wt zero search method took an average

of 0.3 - 0.7% less time than the version using the derivative zero search

method.

7.6.3.4 Summary of the Comparison of the Two Zero Search

Methods

No significant difference has been found in the execution times for the ver-

sion of the collision detection algorithm using the fixed ,5_.ot zero search

method and the version using the derivative zero search method for any

of the three sets of examples considered in this section. The cases in sec-

tion 7.6.3.1 show that using the fixed _2xwt zero search method can some-

times cause the algorithm to give an incorrect answer to the collision de-

tection problem. The chances of missing zeros of some C-functions can be

reduced by choosing smaller values of _hwt, but the execution time increases

as the value of Awt decreases and any savings compared with the version

of the algorithm using the derivative zero search method are reduced. The

296



loss of reliability for the new version of the algorithm far outweighs the ben-

efit of reduced execution time. In almost all cases, the algorithm described

in Chapter 6 will give the correct answer to the collision detection problem

because it cannot overlook any zeros of the C-functions. This algorithm is

clearly superior to the version that uses the fixed _wt zero search method

because it provides provides a much higher degree of reliability using a

comparable amount of CPU time.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

As stated in Chapter 1, the goal of this thesis was to develop a reliable

collision detection algorithm to be used when two spacecraft are operating

in proximity. The previous chapters of this thesis have described the de-

velopment of the new collision detection algorithm based on the C-function

formulation of the configuration space approach. Both spacecraft are mod-

elled as nonconvex polyhedra. The case where one or both of the spacecraft

is represented by a single convex polyhedron is included as a special case.

The new algorithm is designed to handle the case where the moving

craft translates with constant linear velocity and rotates with constant an-

gular velocity relative to the other spacecraft. The algorithm makes special

provisions for the cases where the moving vehicle is translating with con-

stant linear velocity but not rotating and where it is rotating with constant

angular velocity but not translating.

The assumption of constant linear and angular velocities results in forms

for the C-functions as functions of time that have transcendental terms.

Three major contributions have been made in this thesis that provide the

new collision detection algorithm with the ability to handle these tran-

scendental functions. The first contribution is the development of methods

to bound the intervals of time that must be searched for zeros of the C-

functions. An overall search interval for each C-function is found using sim-

ple linear and quadratic inequalities when the moving object is translating

with constant linear velocity. Then, the zero search is restricted to periodic

subintervals of this overall interval by taking advantage of the geometry of

the objects and the direction of the constant angular velocity vector. Only

zeros of the C-functions within these subintervals can represent potential

collisions.

The second contribution of this thesis is the development of methods

to locate the exact zeros of the C-functions in the given bounded search

intervals. This was accomplished by analyzing the form of the generalized
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C-function f(t). First, criteria determining the analytic root intervals of

f(t) were derived. Although these intervals are unbounded in most cases,

they can be used in conjunction with the methods mentioned above to

further limit the zero search intervals. Then, analytic formulas or numerical

procedures for locating the zeros of f(t) were found for each of twelve cases

depending on the values of its six coefficients.

The numerical zero search procedures were designed to take advantage

of the special forms of the first and second derivatives of f(t). These special

forms allow all of the points where these derivatives equal zero to be found.

These points are used in the search for the zeros of the function itself.

Including the points where the first derivative is zero, which are the relative

maxima and minima of the C-function, guarantees that none of the zeros in

the search regions for a C-function is ignored by the algorithm. This means

that the new algorithm can find the exact time of first contact within the

accuracy of the computer's calculations.

This property of the new algorithm makes it more reliable than the

method for collision detection used by the system described in reference [16].

In the latter algorithm, collisions are found by checking the C-functions at

discrete values of time separated by a fixed time step. This approach is lim-

ited to the resolution of the chosen step size and can "miss" collisions that

take place between two discrete check points. A similar problem can occur

when the fixed A,-t zero search method is substituted for the "derivative"

zero search method in the new algorithm, as was demonstrated in Chap-
ter 7.

The final contribution of this thesis is the design of the hierarchy for

the collision detection algorithm that limits the search for zeros of the

C-functions as much as possible. The level of detail in modelling the in-

teraction of the two polyhedra increases as the algorithm progresses to

the later levels of its hierarchy. The algorithm is structured as a series of

successively more complicated and more accurate procedures, as described

in Chapter 6. The most complex procedure used by the algorithm is the

configuration space dynamic collision detection procedure which examines

each of the C-functions individually. The hierarchy for the examination

of a single C-function specifies the order in which the various methods for

bounding the zero search intervals are considered.

The examples in Chapter 7 have shown that the new algorithm success-

fully predicts the time of the first collision for all three types of contacts. It

299



alsocorrectly identifies the features of the moving and stationary polyhedra

that are touching at the time of first contact.

The new collision detection algorithm is the first algorithm that can

solve the collision detection problem exactly for the case where the moving

object has constant linear and angular velocities. The only other algorithm

that can find an exact answer to the collision detection problem is the one

presented in reference [17]. However, that algorithm can only be applied to

cases where the trajectory of the moving object can be written as a straight

line in the configuration space. Modifications are also described for the al-

gorithm i.n reference [17] that allow it to handle cases of polynomial paths

in the configuration space. The assumption of constant angular velocity

used by the new algorithm means that the trajectory for the moving object

cannot be represented as a polynomial in the configuration space. The new

collision detection algorithm can therefore be regarded as a generalization

of the algorithm described in reference [17] because it assumes a more dif-

ficult, but more realistic, path for the configuration of the moving object

in C°t_ (A).

8.2 Recommendations

8.2.1 Improving the Collision Detection Algorithm

The collision detection algorithm can be improved by finding ways to min-

imize the detrimental effects of the accumulation of numerical errors in the

special cases discussed in section 6.4. The choice of the tolerance on the

zero value and its use in the algorithm should be further investigated. It

may be beneficial to have different values for this tolerance, one that is used

when checking the values of the C-functions and the ACFs and another that

is used when checking the third collision condition. Also, additional code

may be needed to recognize the special orientations when more than one

C-function or ACF is exactly equal to zero.

Further improvement in the performance of the algorithm may result

from changing the order in which it considers the pairs of convex polyhedra

forming the moving object and the obstacle and the C-functions defined

by a single pair of these polyhedra. The current version of the algorithm

considers the pairs of convex polyhedra and the sets of different types of

C-functions defined by each of these pairs in the order in which they are
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numbered in the database. This numbering is arbitrarily chosen when the

data are entered. The examples in Chapter 7 have shown that less com-

putation time is required for cases where the collision occurs between one

of the first pairs of convex polyhedra to be checked by the algorithm and

when the time of first contact is a zero of one of the first C-functions to

be examined by the algorithm. This is because the upper bound of the

interval to be searched for zeros of the remaining C-furtctions is truncated

to reflect the value of this valid collision.

The possibility of developing criteria for ordering the convex polyhedra

and features of these polyhedra should be studied. The criteria involving

the parts of the stationary obstacle might depend on the direction of the

velocity vector. For example, the faces of/3 could be ordered according to

the values of time when the linear trajectory of the center of rotation of

A intersected the planes containing these faces. This would mean that the

type (b) C-functions defined using a face of the obstacle that lies behind

another face as seen from the initial position of the moving object would

be checked after those defined using the face of the obstacle that is nearest

to the initial position.

Similar criteria for ordering the convex polyhedra and their feature_ for

the moving object may be more difficult to formulate because the moving

• object changes its orientation relative to the obstacle. One possibility is

to examine the applicability regions of all the C-functions. The current

version of the algorithm stores an applicability timeline for each of the C-

functions defined by the features of two convex polyhedra that are parts of

the moving object and obstacle. An alternative to this would be to store

an overall applicability timellne defining the intervals in a single cycle of wt

where the set of applicable C-functions remains fixed. The same features of

the obstacle will identify the C-functions in each interval, but the features

of the moving object defining the applicable C-functions will change from
interval to interval.

The criteria for ordering the convex polyhedra and their features for
both A and/3 would be combined to determine the final order in which the

algorithm would examine the C-functions. However, the ordering criteria

would have to be kept relatively simple to yield the greatest possible reduc-

tion in computation time. Criteria that were difficultto implement could

use more time than issaved by finding the firstcontact early in the search

for zeros of the C-functions.
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Currently, the algorithm does not use any information about how the

convex polyhedra are connected to form the overall nonconvex polyhedron

representing .4 or B. It considers each pair of convex polyhedra in isolation

from the other pairs. It may be possible to use information about the

configuration of the convex polyhedra to improve the collision detection

algorithm. For example, certain features of one of the convex polyhedra

may be covered by features of another convex polyhedron. Also, it may not

be possible for two features to touch without prior contact between features

of another pair of convex polyhedra. In either of these cases, the algorithm

need not consider the C-functions involving these features because they

cannot be involved in a first contact between .A and B. Again, the rules for

eliminating these C-functions from the zero search must be kept relatively

simple.

The collision detection algorithm as implemented for the thesis can han-

dle any polyhedral model for the two spacecraft. The performance of a

collision detection procedure to be used for a particular set of spacecraft

may be improved by exploiting the shapes of these vehicles. Any sym-

metries or other special properties of the polyhedra representing the two

spacecraft could be used to derive tests similar to the dy'naznic spherical

approximation. Special relationships between the vectors representing the

features of .4 and B may simplify the applicability tests. Also, it may be

possible to formulate the exact rules determining the regions where the set

of applicable C-functions is fixed.

The new algorithm can also handle any combination of initial configua-

tion and linear and angular velocity vectors. Any operational constraints

for a particular pair of spacecraft that restrict these quantities may be used

to simplify the collision detection procedure. The types of trajectories along

which one spacecraft is allowed to approach the other may be limited. This

type of constraint could restrict the allowable directions of the linear and

angular velocity vectors at a particular configuration of the moving space-

craft. Constraints on the the magnitudes of the linear or angular velocity

vectors will influence the observed behavior of the C-functions. This is es-

pecially true if the moving spacecraft is limited to relatively low rotation

rates compared to its translation rates. In these cases, the C-functions will

be nearly linear and less complex zero search procedures can safely be used.

The collision detection algorithm developed for this thesis will provide

the exact solution only when one spacecraft is moving with constant linear
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and angular velocities relative to the other spacecraft. One way to use this

algorithm for trajectories with changing linear or angular velocity vectors is

to execute the algorithm at equally spaced steps along the actual trajectory.

The position and orientation at each step along with the current values of

the linear and angular velocity vectors would-be computed for the actual

trajectory of the moving vehicle and used as input to the collision detection

algorithm at each step. This procedure will be feasible when the linear

and angular velocity vectors are slowly varying with time, as is the case

between jet firings for a spacecraft using a reaction control system. The

algorithm could be executed after each jet firing to get a new prediction of

any collisions using the updated velocity vectors.

Executing the collision detection algorithm at selected steps along the

trajectory may be prohibitively expensive in terms of computation time

when the linear and angular accelerations are high. In these cases, the

spacing between steps must be decreased so that the algorithm must be

run more frequently. Some computation time may be saved by using the

start of the next time step as the upper bound of the zero search interval

for the C-functions. Then, the algorithm will only predict any contact that

will occur in the current time step. Any predictions of contact beyond the

current time step would be inaccurate because of the change in the values

of the linear and angular velocity vectors.

A better approach for solving the collision detection problem for trajec-

tories that are not characterized by constant linear and angular velocities

is to design a new algorithm based on the equations for the new trajec-

tory. One simple extension of the model for the relative motion of the two

spacecraft is to assume translation with constant linear acceleration while

retaining the assumption of rotation with constant angular velocity. A bet-

ter model for the relative translational motion of two spacecraft uses Hill's

equations or the Clohessy-Wiltshire equations. These equations take into
account the effects of orbital mechanics on the motion of the two vehicles.

Another model for the rotational motion of the moving spacecraft could be

derived by assuming that the spacecraft experiences no external torques.

The equations for the torque-free rotation of the rigid vehicle can be solved

in dosed form. This model for the rotational motion specifies the angular

velocity vector as a function of time.

When the magnitude and direction of the angular velocity vector are

both time-varying, the forms of the ACFs will be more complex than the
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shifted sinusoids derived in Chapter 3. This could make the task of finding

the applicability regions for the C-functions more difficult. Also, the forms

of the C-functions as functions of time for any of these different assump-

tions for the relative motion of the spacecraft would be considerably more

complex than those found in Chapter 4. The greatest difficulty in design-

ing a new collision detection algorithm using these assumptions would be

to find a zero search procedure that would apply to the new forms of the

C-functions. The new forms would have to be analyzed for any special

characteristics that could be used to design the search procedure. The effi-

ciency of the zero search procedure using these characteristics would have

to be compared to that of a simple procedure that samples the function

at equally spaced time intervals. This simple procedure may be the only

alternative if the new forms of the functions have no special properties that

can be used to guide the zero search.

The C-function formulation of the configuration space approach can be

used to design a collision detection algorithm as long as the two spacecraft

are modelled as polyhedra. The shape of any spacecraft can be approxi-

mated to any desired degree of accuracy by using more complex nonconvex

polyhedra. However, there is a penalty of increased storage space and com-

putation time when the collision detection algorithm must work with more

complex polyhedra. A more versatile model for the shapes of the vehi-

cles would involve using curved surfaces. If this model were chosen, the

C-function formulation may not be the most practical approach because

the mathematics used to characterize the curved surfaces and, therefore, to

define the C-functions may become quite complicated.

8.2.2 Collision Avoidance Issues

This thesis has concentrated on the detection of potential collisions. How-

ever, this is only the first phase in the broader problem of collision avoid-

ance. The algorithm developed in this thesis can function as a part of an

overall collision avoidance system for spacecraft proximity operations.

A collision avoidance system can be used as a tool for mission planning.

In this case, the system is implemented as part of a simulation of the space-

craft in its orbital environment. It would aid mission planners in choosing

trajectories that accomplished the mission objectives subject to the vehi-

cle's operational constraints and the contraints imposed in order to avoid
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unintentional contact with other spacecraft. For example_ suppose that one

of the mission objectives is to use a spacecraft's reaction control system to

perform maneuvers to dock with another spacecraft. The docking process

typically involves a series of jet firings separated by intervals where the two

spacecraft are coasting relative to one another. A simple collision avoid-

ance system uses the collision detection algorithm to iteratively determine

an acceptable set of jet firings. The algorithm is run after each simulated

jet firing to determine if any unwanted collisions take place before the next

firing. The assumption of constant linear and angular velocities is a rea-

sonable model for the motion of the spacecraft in the intervals between

jet firings. A new firing is suggested for any unacceptable firings and the

algorithm is then executed to check the new set of firings.

A collision avoidance system can also be implemented as part of the

flight software for a spacecraft. In this case, the amount of memory and

CPU time available for the system may be limited. The collision detection

algorithm as well as the other parts of the system should be optimized to

execute in minimal time. This is not as critical when the system is used as

a planning tool because it is not required to run in real time and greater

computer resources will usually be available.

Information on the shapes of the different spacecraft and their relative

motion will be required whether the collision avoidance system is imple-

mented as flight software or as part of a simulation. The database describ-

ing the relevant spacecraft must be available before any of the routines in

the collision avoidance system are executed. The information describing

the current configuration and relative motion of the vehicles will be based

on either real or simulated sensor measurements. Typically, a navigation

routine uses the data from these measurements to produce estimates of the

translational and rotational states of the spacecraft with some associated

errors. The question of how the errors in these estimates propagate through

the collision detection algorithm should be investigated. The loss of accu-

racy in the predicted time of first contact due to these errors should be

quantified to determine if the prediction is still acceptable.

The prediction of a collision by the first phase of the collision avoidance

system will be used in the second phase. As mentioned in Chapter 1, this

phase determines a strategy for avoiding the potential collision. One major

issue in this second phase is the desired amount of automation in selecting

this strategy. One possibility is that the collision avoidance system is ira-
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plementedon an autonomous vehicle. There may be a limited capability

for commanding the vehicle but normally it will operate independently. In

this case, the flight software must make all decisions with no human in-

tervention. The rules for selecting a strategy to avoid a collision must be

codified as part of this software.

Another possibility is that the collision avoidance system is to be used

for a spacecraft that is either partially or completely controlled by a human

operator. The operator may be the pilot of a manned vehicle such as

the shuttle or the ground controller of an unmanned vehicle such as the

OMV. The decision to take any action to prevent collisions is made by the

operator. The collision avoidance system is designed to aid the operator

in making this decision. A simple system may only notify the operator of

an impending collision. A more sophisticated system could also suggest

a possible strategy for avoiding a predicted collision. The operator would

then have the option of implementing this strategy or selecting one of his

or her own. It may also be desirable to have the system check any strategy

selected by the operator before it is implemented to verify that it will avoid

collisions.

Two other factors to be considered in designing an interactive collision

avoidance system are the amount of information to be conveyed to the

operator and the format for presenting this information. All essential in-

formation should be presented in a format that can be quickly and easily

interpreted by the operator. For example, it may be useful to display a

sketch of the two vehicles indicating which parts are predicted to collide

as well as a readout of the predicted time to collision. If the collision can

be avoided by a pure translation, this could be suggested on the sketch of

the vehicles by an arrow indicating the appropriate direction of the velocity

vector.

The second phase of the collision avoidance system must first decide

when it is necessary to take some action to avoid a predicted collision. This

may involve setting a bound on the value of the predicted time to collision

above which no action will be taken. This bound will depend on the control

authority available from the spacecraft's jets or other actuators. It may

also depend on some of the operational constraints for the two spacecraft.

Limitiations on the control authority may also impose another bound on

the value of the predicted time to collision below which the collision is

unavoidable. This bound represents the minimum time necessary for the
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spacecraft to complete a maneuver to avoid the collision.
Once it has been determined that some action must be taken to avoid

a collision, a particular type of action must be chosen. One strategy is to

change the relative trajectory of the two spacecraft. An evasive maneuver

can be performed by either one or both of the spacecraft. First, consider

the case where only one of the spacecraft will perform evasive maneuvers

in response to a potential collision. This active spacecraft can be iden-

tified with the moving object and the passive spacecraft can be identified

with the obstacle when using the collision detection algorithm. Because the

algorithm is based on the configuration space approach, it provides some

information in addition to the time of first contact that may be useful in

selecting an evasive maneuver. First, it can predict the features of the two

polyhedra that are touching at the time of the potential collision. This

information could be used to select the direction of a translation and/or

rotation such that these features move farther apart instead of closer to-

gether. Second, the values of the C-functions near the time of first contact

could be used to suggest a new direction for the trajectory of the config-

uration of the moving object that moves away from the boundary of the

configuration space obstacle. This would take into account the relative mo-

tion of the other features of the two polyhedra besides the ones involved in

the predicted contact. The values of the C-functions have been used in a

similar manner to generate collision-free paths in systems such as the one

described in reference [16].

Now, consider the possibility that both spacecraft are allowed to per-

form maneuvers in response to potential collisions. In this case, the two

spacecraft can cooperate to determine the best way to modify their relative

motion. This requires communication between the computers or operators

controlling each vehicle. There is a greater amount of freedom in choosing

the maneuver(s) for both spacecraft.

Another strategy for avoiding collisions is to change the shape of one

or both of the spacecraft. This changes the configuration space obstacle

so that configurations that were formerly in the obstacle now lie in free

space. This strategy may be feasible if one of the spacecraft has movable

parts such as solar panels or antennas. The knowledge of the features that

touch at the time of first contact is also useful in this case to verify that

the shapes can be changed to prevent the collision. Once the shape of a

spacecraft has been changed, the database describing it must be modified
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to reflect this change.
In the third phase, the collision avoidance system implements the strat-

egy selected in the second phase. The implementation must be monitored

to confirm that collisions have been successfully avoided. One important

problem in this final phase is to determine when the threat of a particular

collision is past. At this point, the system is no longer concerned with that

collision.

The collision avoidance system discussed above is only used to modify

an existing trajectory for a spacecraft such that potential collisions are pre-

vented. The existing trajectory is initially planned by mission designers or

operators to achieve certain goals. The next step beyond a collision avoid-

ance system would be a high-level system for planning spacecraft proximity

operations to achieve these mission goals. This system would be similar to

the task planners now being designed for robots. The mission goals would

be described to the planner in simple terms. The planner would then inte-

grate rules about the operation of the spacecraft to determine the detailed

maneuvers required to achieve the goals. These rules could include criteria

such as avoiding collisions between the spacecraft or minimizing fuel usage

for each maneuver.
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Appendix A

The Intervals where the Second

Derivative is Zero for Case 5

C-Functions of Class II

As shown in section 5.2.2.2, the second derivative of the C-function f(t) for

case 5 of class //when d_ _ 0 can be written as

d_
dt 2 - w {F2(t)cos(wt + ¢2(t))}

where

F_(t) = V/[-_m_t + (2._- _l_)]_+ [_m_t+ (2m_+ _Z3)]_

and

cos¢2(t) = (-¢om2t + (2m_-wl2))/F2(t)

sinCe(t) = (-l-wmat + (2m2 + Wla) ) / F_(t )

This appendix identifies sixteen possible cases for the behavior of the phase

angle i_(t). The quantities ;31, ;32, and a, defined in sections 5.2.2.2 and

5.2.2.3, axe given for each case. In addition, tighter bounds on the location

of the zeros of d_f/dt 2 axe derived.

A.1 Choosing the values of 31 and/32

The phase angle ¢2(t) is either increasing or decreasing between two con-

stant angles ;3_ and ;3_ as t goes from -c_ to +c_. The definitions of ;3t

and ;32 from section 5.2.2.2 axe

cos;31 = m_

v/.q +.q -m_
sin;3t = --m_ =_ tan;3t =--ms

v/-q + -q
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and
COS_2 --ml

sin_2 m_ =_ tan_2---. --Tn,2

The quadrants containing #t and j3: depend on the values of rn2 and ms.

The eight possible combinations for the values of the two coefficients m2

and rn3 for class /I are numbered as follows:

1 m2>0

2 rn2>0

3 rn2<0

4 rn2<0

5 m2=0

6 rn_=0

7 rn2>0

8 m2<0

m3>0

m3<0

rn3>0

rn3<0

ma>0

m3<0

m3__--0

T'/23 = 0

It is always possible, to choose the values of _1 and _2 such that the

curve of ¢2(t) is continuous between them. This choice for the bounds of

the quadrants containing j31 and j32 will depend on the value of d_ as well

as rn2 and m3. The sign of the quantity d_ = 2(rag + m_)+w (m_13 - m31_)

determines whether ¢2(t) is increasing or decreasing. Since d# can be either

positive or negative for each of the eight possible combinations of rn_ and

m3, there are a total of sixteen cases to be examined.

The cases where d# > 0 will be denoted by a + superscript. For these

"+" cases, the phase angle q_2(_) increases monotonically from/31 to _2 =

/31 q-71". As an example, consider case 1 + where m2 > 0, and m3 > 0.

For this case, j31 is located in the fourth quadrant and j3_ is located in the

second quadrant. The phase angle ¢2(t)increases from _ to _2, passing

through values of 0 and zr/2. For ¢2(t) to be continuous from/_ to _, _

must be in the interval (-lr/2, 0) and B2 in the interval (_'/2,7r).

The cases where d# < 0 will be denoted by a - superscript. For these

"-" cases, the phase angle _b2(t) decreases monotonically from _1 to _2 =

j31 - lr. An example of a "-" case is case 3- where m2 is negative and

m3 is positive. The two angles j31 and _2 are located in the third and first

quadrants, respectively. The phase angle ¢2(t) decreases from _ through
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Case I
I +

2÷

3 +

4 +

5 +

6+

7 +

8 +

1-

2-

3-

4-

5-

6-

7-

8-

(_-/2, _') (3_-/2, 2_r)

-r¢/2 7r/2

7r/2 3_'/2

0 _"

71" 27r

(3_r/2, 27r) (r¢/2, _')

(0, _'/2) (-_',-_'/2)

(_r, 37r/2) (0,_'/2)

(Tr/2,_r) (-7r/2, 0)
3_'/2 _'/2

_'/2 -_'/2

0 -Tr

_r 0

Table A.I: The intervals and special values for Bi and _32

7r and _'/2 to _2. If the curve of ¢2(t) is to be continuous, then _l must be

in the interval (z¢, 3_-/2) and j3_ must be in the interval (0,_'/2).

Arguments similar to those given for cases 1 + and 3- govern the choice

of the intervals containing _1 and _2 for the remaining cases where rn2 and

m_ are nonzero. The quadrants containing _3: and _2 are the same for the

corresponding ÷ and - cases. These quadrants are shown in Figure A.1 for

cases 1 + - 4 + and 1- - 4- . This figure also the range of values of ¢2(t) as

arcs of the unit circle. For the ÷ cases, the arrows pointing counterclockwise

on these arcs indicate that ¢2(_) is increasing. Similarly, the arrows pointing

clockwise on the arcs for the - cases indicate that ¢2(t) is decreasing. The

resulting intervals containing _i and _2 for continuous ¢2(t) for these eight

cases are shown in Table A.1.

For cases 5 + , 5-, 6 +, and 6-, rn2 = 0 and cosBi = cosj3_ = 0. For

cases 5 + and 5-, where rn3 > 0, sinai = -1 and sin132 - ÷1. This
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Case 1 +

Case 2 +

Case 3 +

Case 1-

Case 3-

_"_)
____z (_'z')

Case 4 + Case 4-

Figure A.I: The range of values of _b2(t) for cases 1 + - 4 + and 1- - 4-
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meansthat for case5+ ¢2(t) must increase from _1 = -7r/2, through 0, to

_2 = 7r/2. Conversely, for case 5-, ¢2(t) must decrease from _: = 3_'/2,

through _', to _2 = 1,'/2. For cases 6 + and 6-, where rn._ < 0, sinB1 = +1

and sin/32 = -1. Therefore, for case 6 +, ¢2(t) increases from _1 = 7r/2,

through _', to/32 = 37,'/2. For case 6-, ¢2(t) decreases from/31 = 7,'/2,

through 0, to/32 =-7r/2.

Now, sin_l = sin/32 = 0 for cases 7 +, 7-, 8 +, and 8- because rn3 = 0.

The value of m2 is positive for cases 7 + and 7- so that cos_l = +1, and

cos_2 = -1. In case 7 +, ¢2(t) increases from B1 = 0, through zr/2, to

_32 = 7,'. It decreases from/31 = 0, through -7,'/2, to _2 = -7" in case

7-. The coefficient rn2 is negative for cases 8 + and 8-. This means that

cos_l = -1 and cos_ = +1. Thus, ¢2(t) increases from t31 = _', through

37r/2, to/32 = 27r for case 8 + and decreases from/31 = 7r, through zr/2, to

j3_ = 0 for case 8-.

The special locations of/31 and _2 on the unit circle for cases 5 + - 8 +

and cases 5- - 8- axe shown in Figure A.2. The range of values of _b_(t)

for these cases are shown as axes of the unit circle in this figure. As was

the case for Figure A.1, the arrows pointing counterclockwise on the arcs

for "the + cases indicate that c,b2(t) is increasing and the arrows pointing

clockwise on the arcs for the - cases indicate that _2(t) is decreasing. The

resulting special values of/31 and _/_ for continuous _b2(t) in these cases axe

also listed in Table A.1.

A.2 Choosing the value of a

In section 5.2.2.2, the points where the second derivative of f(t) is zero

were shown to be the points where

klTr

 2(t) = + T

for k' an odd integer. These are the points where the curve _b2(t) intersects

one of the family of lines y(t) = -_t + k'Tr/2. The segments of these lines

which lie between V(t) = B1 and V(t) = _2 = _1 -4-7r divide the wt axis into

intervals of length 7,'. A new phase angle a was introduced in section 5.2.2.3

so that the zero search could be conducted on a periodic basis. This phase

angle must be chosen so that two consecutive intervals containing segments
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Case 5 +

•

Case S-

Case 6-

Case 7 + Case 7-

Case 8 + Case 8-

Figure A.2: The range of values of _2(_) for cases 5 + - 8 + and 5- - 8-
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of y(t) form a single cycle where the value of tot +a modulo 27r is contained

in the interval [0, 27r). The relevant intervals for locating the zeros of the

second derivative of f(t) then become intervals of the form [n'Tr,(n' + 1)_']

in wt -4-a. The criteria for choosing the value of a are given below.

The phase angle a is defined by considering one of the intervals con-

raining the segments of the lines y(t) for a particular odd integer k_. This

integer is chosen to be the odd integer whose value is such that the line

y(t) = -tot -4- k'2_r/2 has its y-intercept between _t and _2. That is, the

value of y(0) = k_rr/2 must be between _t and _2. Then, a is computed by

setting tot -4- a equal to zero at the lower bound- of the interval containing

the llne y(t) = -tot -4-k'2zr/2.

When ¢2 is increasing, the intervals of tot containing segments of the

lines y(t) have the form [-_ - 7r + k'?r/2,-_1 -4- k'_r/2]. The lower bound

of the interval containing y(t) = -tot + k_Tr/2 is tot = -Zl - 7r -4- k_,'r/2.

Substituting this value of tot in the equation tot -4-a = 0 gives a = 3t + rr -

When ¢2 is decreasing, the intervals of tot containing segments of the

lines y(t) have the form [-Bt +k'Tr/2,-Zl +rr +k'Tr/2] Therefore, the lower

bound of the interval containing y(0) = -k'27r/2 is tot = -Z_ + k_rr/2 and

a =/31 k_rr/2. For these values of a, the new intervals of tot -4-a become

[(k'- k'2)Tr/2 , (k'- k'2)rr/2 + rr]. Since k' and k_ are both odd integers, their

difference k'- k_ is an even integer and the new intervals of tot + a are

simply [n'Tr,(n' + 1)7r] where n'= (k'- k_)/2 is an integer.

The choice of k_ as described above is ambiguous for the four cases 5 +,

5-, 6 +, and 6- where rn2 = 0. This is because the values of _1 and/32

are equal to k'rr/2 for two different values ofk' E {...,-3,-1, +1, +3,...}.

There are two lines y(t) = -tot +k'Tr/2 whose y-intercepts are exactly equal

to _1 and _2, respectively. In these cases, the lines y(t) divide the orginal tot

axis into intervals of the form [n'Tr, (n' + 1)Tr] where n' is an integer. Since

the purpose of introducing the phase angle a is to convert to intervals of

this form in tot + a, the value of a can be set to zero in these cases.

The values of k_ and a for the sixteen cases are listed in Table A.2.
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ct

I+ I _i + _'/2

2+ I /31+ 7r/2

3+ -I /31+ 3_'/2

4+ 3 /31- _'/2
5+ - 0

6+ - 0

7+ I _'/2

8+ 3 7,'/2

I- 3 /31- 37r/2

2- -I _I+7r/2

3- I /31-7r/2

4- 1 /31-7r/2
5- - 0

6- - 0

7- -I _r/2

8- I 7r/2

Table A.2: The values of k_ and the new phase angle a
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A.3 New Bounds on the Intervals where the

Second Derivative is Zero

The analysis in section 5.2.2.2 showed that in most cases there is a single

zero of d2f/dt 2 in each interval [n'Tr, (n' + 1)_'] 0fwt +a. The bounds of each

interval could be used as the starting values for the secant method, but it

can be shown that the zero of d_f/dt 2 must lie in a smaller part of each

interval. This will yield better starting values for the iteration. These new

starting values are found by considering the values of t where cos ¢2(t) = 0

and where sin¢2(t) = 0.

Recall the definitions of cos¢2(t) and sin¢_(t) from section 5.2.2.2:

cos¢=(t) =

sin ¢=(t) =

-wm2t + (2rn3 - w12)

JE-_m_t + (2m_--_l_)]_+ [_m3t+ (2m_*,_l_)]_
wm3t + (2rn2 + w13)

v/[-_m_t + (2m_- _l_)]_+ [_m3t+ (2m_+ _13)]_

When ms @ 0, the cosine of ¢2(t) is zero for

t(1) _ 2ma - wl2
6gin 2

Evaluating the sine of ¢2(t) at t = t (1) gives

wm_t (_) + 2rn_ + _t_

sinCe(t(1)) = wm3t (1) + 2m2 +wls = 4-1

Thus, the value of ¢_(t (_)) must be equal to k'Tr/2 where k' is an odd integer.

Recall from the definition of k_ that k'27r/2 is between 131 and _2. Since

¢2(t(1)) must also lie between _ and _2, ¢_(t (_)) = k'2_r/2. When rn2 = 0,

t (I) is undefined. In these cases, ¢2(t) approaches k'Tr/2 for t _ +c¢. This

is confirmed by the values of j31 and _2 listed in Table A.1 for cases 5 +, 5-,

6 +, and 6-.

A similar analysis reveals that the sine of ¢2(t) is zero for

t(_ ) = -2m2 - wla

com a
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when ms _ 0. Therefore, the cosine of ¢_(t) at t = t (2) becomes

cos_b2(t(2)) = -¢vrn2t (2) + 2m_-¢_I 2 = -4-1

-_rn_t (2) + 2ms - _l_

The value of ¢2(t(2)) must be equal to rt_r" where n_ is an integer chosen

so that rt_Tr lies between/31 and _2. Consider the quantity (k_ + 1)7r/2.

Since k_ is an odd integer, k_ -4- 1 is an even integer and (k_ -4- 1)_'/2 is

an integral multiple of _'. One of the choices of the sign will yield a value

which lies between t31 and _2. Therefore, ¢2(t(2)) can be set equal to either

(k_ + 1)7r/2 or (k_- 1)_'/2. In cases 1 +, 4 +, 1-, and 4- where/3: is in the

fourth quadrant and _2 is in the second quadrant, rt_ is equal to (k_ - 1)/2.

When _: is in the first quadrant and _2 is in the third quadrant, rt_ equals

(k_ + 1)/2. This corresponds to cases 2 +, 3 +, 2-, and 3-. The quantity

t (2) is undefined when ms = 0. In these cases, ¢2(t) approaches integral

multiples of :r as t --* -4-c¢, as verified by the values of _1 and _ listed in

Table A.1 for cases 7 +, 7-, 8 +, and 8-.

The actual values of ¢2(t(1)) and ¢2(t(_)) depend on the interval _81,_2].

These values are shown in Table A.3. The points corresponding to ¢2(t(1))

and _b2(t (2)) on the unit circle are indicated in Figures A.1 and A.2.

When both rn2 and ms are nonzero, t(1) and t(') are well-defined and

the curve of ¢_(t) must pass through both of these points. It is easy to

determine which of them will occur first. From their definitions,

¢arn2t (1) = 2rn3 - ¢_12 , ¢_rnst (2) = -2rn2 -- _ls

Multiplying the equation on the left by ms and the equation on the right

by rn2 and subtracting the resulting two equations gives

- = 2(ml+ + - =

Therefore, t (x) > t(2) when (rn2rns) > 0 and d_ > 0 or when (rn2rns) < 0

and d_, < 0. These conditions correspond to cases 1 +, 4 +, 2-, and 3-.

Conversely, t(1) < t(_) when (rn2rns) < 0 and d_ > 0 or when (rn_rns) > 0

and d_, < 0. These are the conditions defining cases 2 +, 3 +, 1-, 4-. These

predictions are confirmed by the locations of ¢_(t(:)) and ¢_(t (_)) on the

circles in Figure A.1.

Now, ¢_(t) is continuously increasing or decreasing between B_ and _3_.

Therefore, the time azds can be divided into three intervals using t (1) and
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1 + 7r/2
2+ 7r/2

3 + -7r/2

4 + 37r/2
5+

6+

7+ _'/2

8 + 3_r/2

I- 37r/2

2- -7,'/2

3- • 7,'/2

4- 7r/2

5--

6--

7- -_'/2
8-

¢_(t(_))= n_-
0

7["

0

7r

0

7["

71"

0

7["

0

7r

0

_/2

Table A.3: The values of ¢2(t(1)) and ¢2(t(2))
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t (2). There are corresponding restrictions on the value of ¢_(t) in these

intervals. First, consider cases 1 +, 4 +, 2-, and 3- where t (_) < t (1). In these

cases, the value of ¢2(t) lies between _: and _2(t(2)) = n_Tr for t < t(_).

The value of ¢2(t) lies between ¢2(t(2)) = rt_r¢ and ¢2(t(1)) = k'2:r/2 for

t(2) < t < t(1). The value of ¢2(t) lies between ¢2(t(_)) = k'27r/2 and _2 for

t > t (1). Next, consider the cases 1-, 4-, 2 +, and 3 + where t (1) < t (_). The

value of ¢2(t) lles between _1 and ¢_(t(1)) = k'27r/2 for t < t (_). The value

of ¢_(t) lies between ¢2(t(_)) = k'2_r/2 and ¢2(t(2)) = n_Tr for t(_) < t < t(_).

The value of ¢,(t) lies between ¢2(t(_)) = rt_Tr and _2 for t > t(_).

When. ms = 0, t(:) is undefined. There are only two conditions on the

value of ¢2(t) in this case. The value of ¢2(t) is between _1 and ¢_(t (_)) =

n_r when t < t(2). The value of ¢2(t)is between ¢_(t(')) = rt_" and _2

when t > t (2). Similarly, there are only two conditions on the value of ¢2(t)

when m3 = 0 and t(_) is undefined. The value of ¢_(t) is between _: and

¢2(t(_)) = k'27r/2 when t < t(_). It is between ¢_(t(_)) = k'_r/2 and _ when
t > t (_).

The bounds on the value of ¢_(t) generated using t (_) and t (_) can be

combined with bounds on the value of y(t) in a single interval of _t +a to

find the part of the interval where ¢_(t) can intersect y(t). Cases 1 + - 4 +
and 1- - 4- will be discussed in section A.3.1. Two sets of restrictions are

.presented for these cases. The first set is derived using only the conditions

imposed on ¢_(t) and y(t) by t(:), ¢_(t(_)). The value of V(t) passes through

¢2(t (_)) = k_Tr/2 at wt = (k'- k'_)rr/2. By the definition of n', this is the

point where wt + ot = n'a" + a. The interval [n'rr, (rt' + 1)7r] can be divided

into two parts at the point n'Tr + a. The conditions on the value of y(t) in

these two parts of the interval are compared to the conditions on the value

of ¢2(t) to give new limits on the location of the intersection point of ¢2(t)

and y(t).

The second set of restrictions is derived by using the conditions imposed

on ¢_(t) and y(t) by both t (_), ¢_(t (1)) and t (_), ¢2(t(_)). The segment of the

line y(t) passes through ¢_(t (_)) = n_z" at ¢ot = (k'- k_ 4- 1)7r/2. This is the

point where tot + ct = n'rr + a 4- _r/2. The interval can be subdivided into

three parts at the two points rt'rr + ot and rt'Tr + ot 4- _'/2. A comparison of

the conditions for the value of y(t) in these three parts of the interval and

the conditions on the value of ¢_(t) results in another set of limits on the

part of an interval where the intersection of ¢_(t) and y(t) can occur. These

limits are tighter bounds on the location of the intersection point than the
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limits that are derived using only _(1), ¢_(_(1)).

The special cases 5 + , 5-, 6 + , and 6- where m2 = 0 and 7 + , 7-, 8 + ,

and 8- where ma = 0 are discussed in section A.3.2. In these cases, only

t(1), ¢2(g (1)) or t (_), ¢_(t(2)) are available to derive the new bounds on the

location of the zero of d_f/dg 2. When rn2 = 0, a = 0 and _1 and j32 are

equal to consecutive odd multiples of n'/2. Therefore, the segment of the

line y(_) -- -wt -4- k'_r/2 between _x and _2 reaches the value of n_Tr at the

midpoint of the interval [n'_',(n' + lfir] where _ot = n'rr + 7r/2. For the

cases where ma = 0, _1 and _2 are equal to consecutive integral multiples

of a" and the new phase angle a is equal to rr/2. The segment of the

line y(t) = -_ot + k'_r/2 between _ and 32 passes through k_rr/2 when

_ot + a = rt'_r + a = rt'Tr + rr/2. This is also the midpoint of the interval

[n'_', (n' + 1)Tr]. Thus, the intervals are divided into two equal parts. The

conditions on the value of y(t) in these two parts are compared with the

conditions on the value of ¢2(t) to generate restrictions on the location of

the point of intersection between ¢2(t) and y(t).

The final collision detection algorithm implemented for this thesis uses

the first set of restrictions based on t (1) and ¢_(t (_)) for cases 1 + - 4 + and

1- - 4- . This simplified the programming by allowing the same routine to

be used to find the zeros of the second derivative of f(t) in these cases and

in cases 7 +, 7-, 8 +, and 8- . This routine is also be used for cases 5 +, 5-,

6 +, and 6- by substituting the starting values based on t (_-) and ¢2(t(2)) for

those based on t (1) and ¢2(t(1)). If the second set of restrictions based on

both t (1), ¢2(t0)) and t (2), ¢2(t(2)) were implemented for cases 1 + - 4 + and

1- - 4- , different routines would be required for handling these cases and

the special cases 5 +, 5-, 6 +, 6-, 7 +, 7-, 8 +, and 8-.

The discussion in sections A.3.1 and A.3.2 assumes that only one in-

tersection of the ¢2(t) curve and the llne y(t) takes place in an interval

[n'rr, (n' + 1)_'] of wt +a. The conditions under which multiple intersections

can take place in a single interval and the starting values for the iteration

in this interval were given in section 5.2.2.2.

The format is identical for describing each different set of starting values.

First, the criteria that determine when the set may be used are stated.

Next, the behavior of the line y(t) in a single interval [n'_r,(n' + 1)_'] of

wt + ct is described. Then, the rules governing the choice of the starting

values in this interval are enumerated. A figure is included that shows the

behavior of y(t) and ¢2(t) for each case. The intervals of wt + a in the
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figures are marked with numbers corresponding to the different rules for

the intersection point of ¢2(t) and y(t) for that case.

A.3.1

A.3.1.1

The Cases Where m2 _= 0 and m3 # 0
m,

The New Bounds Using t(I)Alone

This section derives the starting values for the iteration to find the zero

of d_f/dt 2 from the restrictions imposed by t (1) and ¢2(t(1)) alone. As ex-

plained above, these starting values are used by the collision detection al-

gorithm implemented for this thesis. The different starting values for the

cases where d_ > 0 and d_ < 0 are listed below.

Cases 1 + -4 + For these four cases, ¢2(t) is increasing. The llne segment

y(t) decreases from _/2 = _1 +_" at _t +a = n'zr, through k_zr/2 at _t +or =

n'_" + a, to _1 at _t + a = (n' + 1)7r. The limits on the location of the zero

of d2f/dt 2 in the interval [n'_r, (n' + 1)7r] of_t +a are:

. Ifwt(_)+a > n'rr+ct, then the intersection point of ¢2(t) and y(t) must

occur when wt + a E (n'lr +ct, min[wt (1) +a,(n' + 1)_']). Between

these two points, the curve of ¢_(t) is increasing from fll to k'27r/2

and the line y(t) is decreasing from k'_Tr/2 to fl_.

. If wt (1) + a < n':r + a, then the intersection point of ¢_(t) and y(t)

must occur when wt + ct E (max[n'Tr, wt (1) + a],n'zr + a). Between

these two points, the curve of ¢_(t) is increasing from k'2_r/2 to _2 and

the llne y(t) is decreasing from _ to k'27r/2.

3. If wt (1) + ct = n'_" + ct, then the intersection of ¢2(t) and y(t) occurs

at t = t (1). Both ¢,(t (1)) and y(t (1)) are equal to k'_r/2.

An example of the behavior of ¢_(t) for these cases is shown in Figure A.3.

Cases 1- -4- For these four cases, ¢_(t) is decreasing. The line segment

y(t) decreases from _1 at wt +a = n'Tr, through k'2_r/2 at wt +a = rt'Tr +7r/2 ,

to _ =/3: - 7r at wt + a = (n' + 1)Tr. The limits on the location of the zero

of d_f/dt _- in the interval [n'Tr,(n' + 1)_r] ofwt +a are:
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1. If wt(_) + a > n'_r + a, then the intersection point of ¢_(t) and y(t)

must occur when _t + a E (n'Tr, n'Tr + a). Between these two points,

the curve of ¢_(t) and the line y(t) are decreasing from fix to k'27r/2.

2. If wt(1) + a < rt'_" + a, then the intersection point of ¢_(t) and y(t)

must occur when wt + a E (n'_r +a,(n' + 1)7,'). Between these two

points, the curve of ¢_(t)and the line y(t) axe decreasing from k'2_r/2

to f12.

3. IfwtO)+a = n'_" +a, the intersection ¢_(t) and y(t) occurs at t = t (1).

Both ¢2(t(1)) and y(t (_)) are equal to k'27r/2.

An example of the behavior of Cz(t) for these cases is shown in Figure A.4.

A.3.1.2 The New Bounds Using t (t) and t (2)

Now, consider the restrictions imposed by using both t (1), ¢_(t(1)), and t (2),

¢2(t(_)). By adding the conditions on the value of ¢2(t) and y(t) arising

from t (2), ¢2(t(2)), tighter bounds can be placed on the location of the zero

of d2f/dt 2. The zero can now be confined to one of three parts of each

interval [n'Tr, (n' + 1)z'] of wt + a as opposed to the two parts that were

obtained using t (1) and ¢2(t(1)) alone.

There are four possibilities depending on the values of d_b, tO), and t (2).

The starting values for the iteration for the zero of d2f/dt 2 for each of these

possibilities axe listed in the following paragraphs. As mentioned previously,

these starting values were not used by the algorithm implemented for this

thesis for simplicity of programming.

Cases 1+ and 4 + For these two cases, ¢,(t) is increasing and t(1) > t(2). In

the interval [n'Tr, (n'+ 1)7r], the line segment y(t) decreases from f12 = fl_ + _r

at _¢t +a = rt'Tr, through k'_r/2 at _t +a = n'_" +a and rt_" = (k_- 1)7,'/2

at _t +a = rt'_r +a +7r/2, to fl_ at _t +a = (n' + 1)Tr. The following limits

can be placed on the location of the zero of d2f/dt 2 in this interval:

1. If_t(2)+a > n'_'+a+Tr/2, then the intersection point of¢2(t) and y(t)

must occur when wt +a E (rt'_r +a + 7r/2, max[(rt' + 1)Tr, wt (2) +al).

Between these two points, the curve of ¢_(t) is increasing from fll to

n_Tr and the line y(t) is decreasing from rt_" to fl_.
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2. If _t(_)+a < n'_" + a, then the intersection point of ¢2(t) and y(t)

must occur when wt + ct q (max[n'lr, wt(1) + ctl, rt'Tr + ct). Between

these two points, the curve of ¢2(t) is increasing from k'27r/2 to _ and

the line y(t) is decreasing from _2 to k'2w/2.

3. If ¢vt (2) + ct < n'w + a + _'/2 and _t (1) + a > n'Tr + a, then the

intersection point of ¢2(t) and y(t) must occur when

wt +ct E (max[n'Tr + ct, wt(2) + a], min[n'Tr +ct + 7r/2,wt(1) +_t])

Between these two points, the curve of ¢2(t) is increasing from n_"

to k'2w/2 and the line y(t) is decreasing from k'2_r/2 to n_'.

4. If _t (_)+ a = n'Tr + a, then the intersection point of ¢2(t) and y(t) is

t = t(1). Both ¢2(t(1)) and y(t(1)) are equal to k'_r/2.

5. If _:t (2) + a = n'Tr + a + _'/2, then the intersection point of ¢2(t) and

y(t) is t = t(2). Both ¢_(t(_)) and y(t (2)) are equal to n_Tr.

An example of the behavior of ¢2(t) for these cases is shown in Figure A.5.

Cases 2 + and 3 + For these two cases, _2(t) is increasing and t (2) > t (1). In

the interval [n'_', (n' + 1)_r], the line segment y(t) decreases from _ = _: + _r

at _t + ct = n'_r, through n_n" = (k_ + 1)7r/2 at wt + ct = rt'_r + ct - _r/2 and

k_'/2 at _t +a = rt'Tr +a, to _ at _t +a = (n' + 1)_r. In these two cases,

the possible limits for the location of the zero of d2f/dt 2 in a single interval

are:

.

*

Ifwt(_)+ot > n'_'+a, then the intersection point of¢_(t) and y(t) must

occur when wt + ct _ (n'_r + a, min[(n' + 1)_-,wt(1) +ct]). Between

these two points, the curve of ¢_(t) is increasing from _: to k'_r/2

and the line y(t) is decreasing from k'_r/2 to _/_.

If wt (_) + a < n'_r + a - _r/2, then the intersection point of ¢_(t) and

y(t) must occur when wt + a _ (max[n'_r, wt (_) + ct],n'_" + ct- _r/2).

Between these two points, the curve of ¢_(t) is increasing from n_r

to Z_ and the line y(t) is decreasing from Z_ to n_r.
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3. If_t(I) +o_ < n'_'+a and _t(m)+a > n'_'+a-n'/2, then the

intersectionpoint of ¢2(t) and y(t) must occur when

+ <, + <, +,-.], + +

Between these two points, the curve of ¢2(t) is increasing from k'_rl2

to n_Tr and the line y(t) is decreasing from n_n" to k_/2.

4. If wt (1) + a = n'_" + a, then the intersection point of ¢2(t) and y(t) is

t = t (1). Both ¢_(t (1)) and y(t (_)) are equal to k_'/2.

5. If wt (_) + a = n'_" + ct - _'/2, then the intersection point of ¢_(t) and

y(t) is t = t (2). Both ¢2(t(2)) and y(t (_)) are equal to n_'.

An example of the behavior of ¢2(t) for these cases is shown in Figure A.6.

Cases i- and 4- For these two cases,¢2(t) is decreasing and t(_)> t(I).

In the interval [n'Tr,(n' + 1)_r], the llne segment y(t) decreases from _31 at

_t +a = n'_', through k'_rl2 atwt +a =rt'Tr +ct and n'fr =(k_- 1)_'/2 at

wt + ct = rt'Tr + a + 7r/2, to _ = Jl - _" at wt + ct = (n' + 1)_r. The limits"

for the location of the zero of d_f/dt _- in a single interval are.-

. If wt(:) + a > n'_- + a, then the intersection "point of ¢2(t) and y(t)

must occur when wt + ct E (n'Tr, n'Tr + ct) Between these two points,

the curve of ¢2(t) and the line y(t) are decreasing from B: to k'2_r/2.

. If wt (2) + a < n'_" + a + 7r/2, then the intersection point of ¢2(t) and

y(t) must occur when _t + ct E (n'Tr + ct + _'/2, (n' + 1)_'). Between

these two points, the curve of ¢2(t) and the line y(t) are decreasing

from n_n" to _2.

3. If wt (1) + a < n'_" + a and wt (_) + ct > rt'n" + a + _'/2, then the

intersection point of ¢_(t) and y(t) must occur when

wt + a E (n'_" + a, rt'_r + a + _'/2)

Between these two points, the curve of ¢_(t) and the llne y(t) are

decreasing from k'_r/2 to n_'.
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4. If xt(1) + a = rt'Tr+ a, then the intersection point of $2(t) and y(t) is

t = t (1). Both $2(t(_)) and y(t (1)) are equal to k'27r/2.

5. If wt (2) + a = n'_" + a + 7r/2, then the intersection point of ¢2(t) and

y(t) is t = t (_). Both ¢2(t(2)) and y(t (2)) are equal to n_'.

An example of the behavior of ¢2(t) for these cases is shown in Figure A.7.

Cases 2- and 3- For these cases, ¢2(t) is decreasing and t (1) > t (2).

In the interval [n'Tr, (n' + 1)7r], the line segment y(t) decreases from/31 at

_t + a = rt'_r, through n_Tr = (k_ + 1)7r/2 at _t + ct = n'_r + ct - _r/2 and

k'27r/2 at ¢vt + ct = n'Tr + a, to _2 = _ - _" at _t + ct = (n' + 1)_'. In these

two cases, the possible limits for the zero of d2f/dt _- in a single interval are:

1. If wt (2) + ct > rt'Tr + a - rr//2, then the intersection point of ¢2(t) and

y(t) must occur when wt + a e (n'Tr, rt'Tr + a - rr//2). Between these

two points, the curve of ¢_(t) and the line y(t) are decreasing from

_1 to n_Tr.

2. If wt(1) + a < n'_r + a, then the intersection point of ¢2(t) and y(t)

must occur when wt + a E (n'Tr + a, (n' + 1)Tr). Between these two

points, the curve of ¢_(t) and the line y(t) are decreasing from k'_r/2

to _.

3. If wt (_) + a < n'lr + ct - _r/2 and (_t (1) + a > n'Tr + a, then the

intersection point of ¢_(t) and y(t) must occur when

_t + a E (n'_" + a - _'/2, rt'_" + a)

Between these two points, the curve of ¢2(t) and the line y(t) are

decreasing from rt_Tr to k'27r/2.

4. If wt (_) + ct = rt'Tr + a, then the intersection point of ¢2(t) and y(t) is

t = t(_). Both ¢_(t (_)) and y(t (_)) are equal to k'_r/2.

5. If wt(_) + a = n'_" + a - _r/2, then the intersection point of ¢_(t) and

y(t) is t = t(_). Both ¢_(t(_)) and y(t (_)) are equal to n_'.

An example of the behavior of ¢_(t) for these cases is shown in Figure A.8.
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A.3.2 The Cases whereto2 =0 orm3=0

For cases5+, 5-, 6+, and 6-, only t(2)and ¢z(t(2))= n_r are availableto

limitthe part of an intervalwhere the zero of dUf/d_2 can be located. In

addition,c_= 0 and the intervalsbecome inter_'alsofwt. For cases 7+, 7-,

8+, and 8-, only t(I)and ¢_(t(I))= k_a'/2 are availableto limit the part of

an intervalwhere the zero of d2f/dt2 can be located and a = 7r/2. These

cases are presented in the following sections according to whether ¢2(t) is

increasingor decreasing. The limitslistedin these sections are similar to

those presented in section A.3.1.1.

A.3.2.1 Cases 5 + and 6 +

For the two cases 5 + and 6 + where ¢2(t) is increasing, the line segment y(t)

decreases from _2 = _1 + rc at wt = n'Tr, through n_" at _;t = n'Tr + r¢/2, to

_ at a;t - (n' ÷ 1)_r. The limits on the location of the zero of d_f/dt 2 in

the interval [n'Tr,(n' + 1)Tr] of wt are:

1. If wt (2) > n'_" + _'/2, then the intersection point of ¢_(t) and y(t)

must occur when wt, • (n'Tr _ 7r/2, min[wt(2),(n' ÷ 1)_']). Between

these two points, the curve of ¢_(t) is increasing from _1 to n_" and

the line y(t) is decreasing from n_" to Zl.

2. If wt (2) < n'_r ÷ _'/2, then the intersection point of ¢2(t) and y(t)

must occur when wt • (max[n'Tr, wt(2)],n'Tr ÷ 7r/2). Between these

two points, the curve of ¢2(t) is increasing from n_" to _2 and the

line y(t) is decreasing from Z2 to n_Tr.

3. If wt (_) = n'Tr ÷ _'/2, then the intersection point of ¢2(t) and y(t) is

t = t (2). Both ¢_(t (2)) and y(t (_)) are equal to n_Tr.

An example of the behavior of ¢2(t) for these cases is shown in Figure A.9.

A.3.2.2 Cases 5- and 6-

For the two cases 5- and 6- where ¢_(t) is decreasing, the line segment

y(t) decreases from fl_ at wt = n'zr, through n_Tr at wt = rt'Tr + z¢/2, to

f12 = fll - _r at wt = (n' + 1)7r. The limits on the location of the zero of

d_f/dt _ in the interval [n'Tr, (n' + 1)_r] ofa;t are:
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1. Ifwt (2) > n'_'+rr/2, then the intersection point of ¢_(t) and v(t) must

occur in the interval wt E (n'w,n'Tr + 7r/2). Between these two points,

the curve of ¢2(t) and the line y(t) are decreasing from 3t to n_Tr.

2. If cat (2) < n'_" +a'/2, then the intersectionpoint of ¢2(t) and y(t) must

occur when cat E (n'w + a'/2, (rt' + 1)7r). Between these two points,

the curve of ¢2(t) and the line V(t) are decreasing from rt_Tr to _32.

3. If cat (z) = n'Tr + 7r/2, then the intersection point of ¢2(t) and y(t) is

t = t (_). Both ¢2(tC2)) and y(t (_)) are equal to n_'.

An example of the behavior of ¢2(t) for these cases is shown in Figure A.10.

A.3.2.3 Cases 7 + and 8 +

For the two cases 7 + and 8 + where ¢_(t) is increasing, the line segment

y(t) decreases from 82 = /31 + _" at cat + 7r/2 = n'_', through k'2rc/2 at

cat + _'/2 = n'_" + 7r/2, to _1 at cat + 7r/2 = (n' + lfir. The limits on the

location of the zero of d2f/dt 2 in the interval [n'Tr,(n' + 1)7r] of cat + 7r/2

are:

.

*

Ifwt(1) +_r/2 > n'Tr +rr/2, then the intersection point of ¢2(t) and y(t)

mustoccurwhencat e + rain[cat( (='+
Between these two points, the curve of ¢2(t) is increasing from 31 to

k'2zrl2 and the line y(t) is decreasing from k'2zr/2 to _31.

If cat (_) + 7r/2 < n'Tr + _'/2, then the intersection point of ¢2(t) and

y(t) must occur when cat + 7r/2 e (max[n'Tr,cat (1) + zr/2],n'z¢ + _r/2).

Between these two points, the curve of ¢_(t) is increasing from k'27r/2

to/32 and the line y(t) is decreasing from B2 to k'2zr/2.

3. If cat (1) + 7r/2 = n'Tr + 7r/2, then the intersection point of ¢2(t) and

y(t) is t = t (1). Both ¢2(t(_)) and y(t (1)) are equal to k'2_r/2.

An example of the behavior of ¢2(t) for these cases is shown in Figure A.11.
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A.3.2.4 Cases 7- and 8-

For the two cases 7- and 8- where ¢2(t) is decreasing, the llne segment y(t)

decreases from 31 at _ot +a'/2 = rt'a', through k'_r/2 at _ot +a,/2 = rt'Tr+Tr/2,

to 32 = 31 - _" at wt + 7r/2 = (n' + 1)_'. The limits on the location of the

zero of d2f/dt 2 in the interval [n'Tr,(n' + 1)a'] of_t + a'/2 are:

° If wt (_) + 7r/2 > n'Tr + a'/2, then the intersection point of ¢2(t) and

y(t) must occur when _ot +_r/2 E (rt'Tr,n'_r + _'/2). Between these two

points, the curve of ¢2(t) and the llne y(t) are decreasing from 31 to

° If cot(1) +_-/2 < n'a" +a'/2, then the intersection point of ¢2(t) and y(t)

must occur when _0t + _'/2 E (n'a" + _'/2, (n' + 1)_r). Between these

two points, the curve of ¢2(t) and the line y(t) are decreasing from

/¢_'/2 to _2.

3. If cot (1) + a-/2 = n'_" + a'/2, then the intersection point of ¢2(t) and

y(t) is t = t(1). Both ¢2(t(1)) and y(t (1)) are equal to k'27r/2.

An example of the behavior of ¢2(t) for these cases is shown in Figure A.12.
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Appendix B

Two Iterative Methods for Finding
the Zeros of a Function

This appendix gives a brief discussion of standard linear interpolation and

its variant, the secant method. More detailed descriptions of these methods

can be found in references [26,27,28].

B.1 Linear Interpolation

Linear interpolation is one of the oldest and simplest iterative methods for

finding a zero of a function. It is also called the method of false position

or regula falsi. As its name implies, this method finds a zero of a function

by approximating the original function by a series of linear functions and

solving for the zeros of each of these linear functions. At each step of

the iteration, only one new value of the f_mction itself is evaluated. No

derivatives of the function are used for this method.

Let f(t) be the function whose zero is to be found and let to < tl be

two distinct values of t such that the product f(to)f(tl) is negative. Then,

there must be at least one zero of f(t) in the interval [t0,tl]. Assume that

there is only one zero of f(t) in this interval. As explained in Chapter 5,

this will always be the case in this thesis. To find the zero using linear

interpolation, f(t) is approximated by the line passing through f(to) at to

and through f(tl) at tl. Thus,

f(t)_
(t - to)f(tl)- (t - t_)f(to)

tl - to

Setting the above equation equal to zero gives

_2 "--
to/(t )-tJ(to)

f(tl)-f(to)

where t_ is the first approximation for the zero of f(t). Now, f(t2) is

evaluated and compared to f(to) and f(tl). Assuming that f(t2) _ 0, the
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actual zero of /(t) lies in one of the intervals [t0,t2] or [t2, tl] depending

on whether f(to)f(t2) < 0 or f(tl)f(t2) < 0. If/(to)/(t2) < 0, the next

approximation for the zero of f(t), ta, is found from

l_3
tof(tz)-t2f(to)

f(t_)-f(to)

If f(tl)y(t,)< 0, then to and f(to)are replaced bytl and/(tl), respectively,

in the above equation for tz. This process is repeated until the approximate

value of the zero, t,_, becomes sufficiently close to the actual zero of f(t).

Either t0and f(to) or tl and f(tl) is used at each step of the iteration. (As

discussed in the next section, this is not the case for the secant method

which uses the previous two iterates to generate the next approximation to

the zero of the function.)

The equation for t,,+_ given t,_ and f(t,_) is

tlf(t,_)-t,_f(tl) forn = 1,2,...
t.+l = /(t.) - f(t,)

where i = 0 if f(to)f(t,_) < 0 and i = 1 if f(tl)f(t,_) < 0. Two alternate

forms of this equation are

t.+, = t, - - f(tl)

--t..- -

Figure B.1 illustrates the process of standard linear interpolation. For

the graph of f(t) shown in this figure, i = 0 and to and f(to) are used at

each step in the iteration. The new approximation for the zero, t,_+l, is

obtained from the old approximation, t,_, and to using the equation

tof(t,_)-t,_f(to)
t.+_= f(t.)- f(to)

The series t2,tz,... ,t,_,... generated from repeated use of the equation

for t_,+l can be shown to converge to the value of the zero for any continuous

function f(t). Let the error at the (rt + 1)th step in the iteration be defined
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Figure B.I: The method of linear interpolation or regula fal_i

as the absolute value of the difference between t,,+l and the actual value of

the zero of f(t). When linear interpolation is applied in a region where the

function is convex, the error at each step in the iteration is proportional to

the error at the previous step where the constant of proportionality is less

than one. Because the error at each step is proportional to the error at the

previous step raised to the first power, this method is said to have linear

convergence in a region where f(t) is convex.

B.2 The Secant Method

A variation of the linear interpolation method that has improved conver-

gence is the secant method. For this method, the previous two points in

the series are used to generate the next approximation to the zero of f(t).

This contrasts with standard linear interpolation where one of the starting

points is always used at each step of the iteration. The secant method

generally requires fewer steps to find the zero of f(t) to some specified ac-

curacy than the linear interpolation method. For this reason, it is used by

the numerical zero search procedures implemented in this thesis.

The first two iteration steps for the secant method are the same as
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for standard linear interpolation. The first step uses the starting points

to, f(to) and tl, f(tl) to generate t2. The second step uses t2, f(t_) and

either to, f(to) or tl, f(t_) to generate ta. The equations for t2 artd tz are

given in the preceding section. The third approximation to the zero of f(t),

t,, is generated using t2,f(t2) and t3,f_t_). Similarly, at each subsequent
step, the two previous points t,_-l, f(t.__) and t,_,f(t_ ) are used to generate
t,_+l. The equation for t,_+l when n = 3, 4,... is

t,_-lf(t.)-t._f(t,__l)
t_+l= f(t,_)-f(t,__l)

This equation can also be written in the two forms shown below:

t_ -- __ I

f(t,__l)

) G - t,_-I
= t,_- f(t,_ f(t,_) f(t,_-l)

When to and tl are sufficiently close to the actual zero of f(t), the secant

method has superlinear convergence. This means that the error at each step

in the iteration is on the order of the error at the previous step raised to

a power greater than one. In particular, it can be shown that the error at

each step in the iteration is on the order of the error at the previous step

raised to the power (1 + v/5)/2 _ 1.618. This is a substantial improvement

over standard linear interpolation.

The conditions determining when to and tl are "sufficiently" close to

the zero of f(t) can be found in references [26,28]. Reference [28] also gives

art example using both linear interpolation arid the secant method that

demonstrates the more rapid convergence of the secant method.

The stopping criterion for the iteration using the secant method is such

that the value of the zero is computed to single precision accuracy. The

relative error is defined to be I(t,_+_ -t,_)/t,I, except for the special case

where t, = 0 where it is defined to be I(t,,+_ - t,_)/t,_+xl. The iteration is

terminated when the relative error is less than some tolerance denoted by

e. For single precision computations, e is set equal to 10 -6.

A second stopping criterion is also included that tests the total number

of iteration steps. For this thesis, the iteration was stopped after twenty
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steps regardless of the value of the relative error. This maximum value of

twenty iteration steps was chosen arbitrarily. The test on the number of

iteration steps is primarily a safety measure to insure that the iteration is

stopped at some point. It was never needed for any of the examples run for

this thesis. The secant method typically converged to within the desired

accuracy for the value of the zero in three or four steps.
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